BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  US Device
Europe
Asia

DIVERSITY

PROFILES
Company Profiles

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Research Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Biochemistry - Neurological Disorders - Neuroscience - Pediatrics and Child Health

Proteomic Analysis of Adrenocorticotropic Hormone Treatment of an Infantile Spasm Model Induced by N-Methyl-d-Aspartic Acid and Prenatal Stress
Published: Tuesday, September 18, 2012
Author: Jing Wang et al.

by Jing Wang, Juan Wang, Ying Zhang, Guang Yang, Wen-Jing Zhou, Ai-Jia Shang, Li-Ping Zou

Infantile spasms is an age-specific epileptic syndrome associated with poor developmental outcomes and poor response to nearly all traditional antiepileptic drugs except adrenocorticotropic hormone (ACTH). We investigated the protective mechanism of ACTH against brain damage. An infantile spasm rat model induced by N-methyl-d-aspartate (NMDA) in neonate rats was used. Pregnant rats were randomly divided into the stress-exposed and the non-stress exposed groups, and their offspring were randomly divided into ACTH-treated spasm model, untreated spasm model, and control groups. A proteomics-based approach was used to detect the proteome differences between ACTH-treated and untreated groups. Gel image analysis was followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometric protein identification and bioinformatics analysis. Prenatal stress exposure resulted in more severe seizures, and ACTH treatment reduced and delayed the onset of seizures. The most significantly up-regulated proteins included isoform 1 of tubulin ß-5 chain, cofilin-1 (CFL1), synaptosomal-associated protein 25, malate dehydrogenase, N(G),N(G)-dimethylarginine dimethylaminohydrolase 1, annexin A3 (ANXA3), and rho GDP-dissociation inhibitor 1 (ARHGDIA). In contrast, tubulin a-1A chain was down-regulated. Three of the identified proteins, ARHGDIA, ANXA3, and CFL1, were validated using western blot analysis. ARHGDIA expression was assayed in the brain samples of five infantile spasm patients. These proteins are involved in the cytoskeleton, synapses, energy metabolism, vascular regulation, signal transduction, and acetylation. The mechanism underlying the effects of ACTH involves the molecular events affected by these proteins, and protein acetylation is the mechanism of action of the drug treatment.
  More...

 

//-->