BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  US Device
Europe
Asia

DIVERSITY

PROFILES
Company Profiles

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Research Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Computer Science - Immunology - Mathematics - Respiratory Medicine

Application of the Asthma Phenotype Algorithm from the Severe Asthma Research Program to an Urban Population
Published: Thursday, September 13, 2012
Author: Paru Patrawalla et al.

by Paru Patrawalla, Angeliki Kazeros, Linda Rogers, Yongzhao Shao, Mengling Liu, Maria-Elena Fernandez-Beros, Shulian Shang, Joan Reibman

Rationale

Identification and characterization of asthma phenotypes are challenging due to disease complexity and heterogeneity. The Severe Asthma Research Program (SARP) used unsupervised cluster analysis to define 5 phenotypically distinct asthma clusters that they replicated using 3 variables in a simplified algorithm. We evaluated whether this simplified SARP algorithm could be used in a separate and diverse urban asthma population to recreate these 5 phenotypic clusters.

Methods

The SARP simplified algorithm was applied to adults with asthma recruited to the New York University/Bellevue Asthma Registry (NYUBAR) to classify patients into five groups. The clinical phenotypes were summarized and compared.

Results

Asthma subjects in NYUBAR (n?=?471) were predominantly women (70%) and Hispanic (57%), which were demographically different from the SARP population. The clinical phenotypes of the five groups generated by the simplified SARP algorithm were distinct across groups and distributed similarly to those described for the SARP population. Groups 1 and 2 (6 and 63%, respectively) had predominantly childhood onset atopic asthma. Groups 4 and 5 (20%) were older, with the longest duration of asthma, increased symptoms and exacerbations. Group 4 subjects were the most atopic and had the highest peripheral eosinophils. Group 3 (10%) had the least atopy, but included older obese women with adult-onset asthma, and increased exacerbations.

Conclusions

Application of the simplified SARP algorithm to the NYUBAR yielded groups that were phenotypically distinct and useful to characterize disease heterogeneity. Differences across NYUBAR groups support phenotypic variation and support the use of the simplified SARP algorithm for classification of asthma phenotypes in future prospective studies to investigate treatment and outcome differences between these distinct groups.

Trial Registration

Clinicaltrials.gov NCT00212537

  More...

 

//-->