BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

Free Newsletters
My Subscriptions

News by Subject
News by Disease
News by Date
Search News
Post Your News

Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Pharm Country
  Bio NC
  Southern Pharm
  BioCanada East
  C2C Services & Suppliers™


Company Profiles

Research Store

Research Events
Post an Event
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Molecular Biology - Rheumatology

Synovial Fluid Progenitors Expressing CD90+ from Normal but Not Osteoarthritic Joints Undergo Chondrogenic Differentiation without Micro-Mass Culture
Published: Wednesday, August 29, 2012
Author: Roman J. Krawetz et al.

by Roman J. Krawetz, Yiru Elizabeth Wu, Liam Martin, Jerome B. Rattner, John R. Matyas, David A. Hart


Mesenchymal progenitor cells (MPCs) can differentiate into osteoblasts, adipocytes, and chondrocytes, and are in part responsible for maintaining tissue integrity. Recently, a progenitor cell population has been found within the synovial fluid that shares many similarities with bone marrow MPCs. These synovial fluid MPCs (sfMPCs) share the ability to differentiate into bone and fat, with a bias for cartilage differentiation. In this study, sfMPCs were isolated from human and canine synovial fluid collected from normal individuals and those with osteoarthritis (human: clinician-diagnosed, canine: experimental) to compare the differentiation potential of CD90+ vs. CD90- sfMPCs, and to determine if CD90 (Thy-1) is a predictive marker of synovial fluid progenitors with chondrogenic capacity in vitro.


sfMPCs were derived from synovial fluid from normal and OA knee joints. These cells were induced to differentiate into chondrocytes and analyzed using quantitative PCR, immunofluorescence, and electron microscopy.


The CD90+ subpopulation of sfMPCs had increased chondrogenic potential compared to the CD90- population. Furthermore, sfMPCs derived from healthy joints did not require a micro-mass step for efficient chondrogenesis. Whereas sfMPCs from OA synovial fluid retain the ability to undergo chondrogenic differentiation, they require micro-mass culture conditions.


Overall, this study has demonstrated an increased chondrogenic potential within the CD90+ fraction of human and canine sfMPCs and that this population of cells derived from healthy normal joints do not require a micro-mass step for efficient chondrogenesis, while sfMPCs obtained from OA knee joints do not differentiate efficiently into chondrocytes without the micro-mass procedure. These results reveal a fundamental shift in the chondrogenic ability of cells isolated from arthritic joint fluids, and we speculate that the mechanism behind this change of cell behavior is exposure to the altered milieu of the OA joint fluid, which will be examined in further studies.