BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  US Device
Europe
Asia

DIVERSITY

PROFILES
Company Profiles

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Research Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Pharmacology - Physiology - Respiratory Medicine

CFTR Regulates Early Pathogenesis of Chronic Obstructive Lung Disease in ßENaC-Overexpressing Mice
Published: Friday, August 24, 2012
Author: Bjarki Johannesson et al.

by Bjarki Johannesson, Stephanie Hirtz, Jolanthe Schatterny, Carsten Schultz, Marcus A. Mall

Background

Factors determining the onset and severity of chronic obstructive pulmonary disease remain poorly understood. Previous studies demonstrated that airway surface dehydration in ßENaC-overexpressing (ßENaC-Tg) mice on a mixed genetic background caused either neonatal mortality or chronic obstructive lung disease suggesting that the onset of lung disease was modulated by the genetic background.

Methods

To test this hypothesis, we backcrossed ßENaC-Tg mice onto two inbred strains (C57BL/6 and BALB/c) and studied effects of the genetic background on neonatal mortality, airway ion transport and airway morphology. Further, we crossed ßENaC-Tg mice with CFTR-deficient mice to validate the role of CFTR in early lung disease.

Results

We demonstrate that the C57BL/6 background conferred increased CFTR-mediated Cl- secretion, which was associated with decreased mucus plugging and mortality in neonatal ßENaC-Tg C57BL/6 compared to ßENaC-Tg BALB/c mice. Conversely, genetic deletion of CFTR increased early mucus obstruction and mortality in ßENaC-Tg mice.

Conclusions

We conclude that a decrease or absence of CFTR function in airway epithelia aggravates the severity of early airway mucus obstruction and related mortality in ßENaC-Tg mice. These results suggest that genetic or environmental factors that reduce CFTR activity may contribute to the onset and severity of chronic obstructive pulmonary disease and that CFTR may serve as a novel therapeutic target.

  More...

 

//-->