BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  US Device
Europe
Asia

DIVERSITY

PROFILES
Company Profiles

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Research Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Anesthesiology and Pain Management - Neurological Disorders - Neuroscience

PI3K Contributed to Modulation of Spinal Nociceptive Information Related to ephrinBs/EphBs
Published: Friday, August 03, 2012
Author: Li-Na Yu et al.

by Li-Na Yu, Xue-Long Zhou, Jing Yu, Hao Huang, Li-Shan Jiang, Feng-Jiang Zhang, Jun-Li Cao, Min Yan

There is accumulating evidence to implicate the importance of EphBs receptors and ephrinBs ligands were involved in modulation of spinal nociceptive information. However, the downstream mechanisms that control this process are not well understood. In the present study, we investigated whether phosphatidylinositol 3-kinase (PI3K), as the downstream effectors, participates in modulation of spinal nociceptive information related to ephrinBs/EphBs. Intrathecal injection of ephrinB1-Fc produced a dose- and time-dependent thermal and mechanical hyperalgesia, accompanied by the increase of spinal PI3K-p110?, phosphorylation of AKT (p-AKT) and c-Fos expression. Pre-treatment with PI3K inhibitor wortmannin or LY294002 prevented activation of spinal AKT induced by ephrinB1-Fc. Inhibition of spinal PI3K signaling dose-dependently prevented and reversed pain behaviors and spinal c-Fos protein expression induced by intrathecal injection of ephrinB1-Fc. Inhibition of EphBs receptors by intrathecal injection of EphB1-Fc reduced formalin-induced inflammation and chronic constrictive injury-induced neuropathic pain behaviors accompanied by decreased expression of spinal PI3K,p-AKT and c-Fos protein. Furthermore, pre-treatment with PI3K inhibitor wortmannin or LY294002 prevented ephrinB1-Fc-induced ERK activation in spinal. These data demonstrated that PI3K and PI3K crosstalk to ERK signaling contributed to modulation of spinal nociceptive information related to ephrinBs/EphBs.
  More...

 

//-->