BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  C2C Services & Suppliers™
Europe
Asia

DIVERSITY

PROFILES
Company Profiles

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Research Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Physiology - Radiology and Medical Imaging

Fluorine-19 Magnetic Resonance Angiography of the Mouse
Published: Friday, July 27, 2012
Author: Ruud B. van Heeswijk et al.

by Ruud B. van Heeswijk, Yves Pilloud, Ulrich Flögel, Jürg Schwitter, Matthias Stuber

Purpose

To implement and characterize a fluorine-19 (19F) magnetic resonance imaging (MRI) technique and to test the hypothesis that the 19F MRI signal in steady state after intravenous injection of a perfluoro-15-crown-5 ether (PCE) emulsion may be exploited for angiography in a pre-clinical in vivo animal study.

Materials and Methods

In vitro at 9.4T, the detection limit of the PCE emulsion at a scan time of 10 min/slice was determined, after which the T1 and T2 of PCE in venous blood were measured. Permission from the local animal use committee was obtained for all animal experiments. 12 µl/g of PCE emulsion was intravenously injected in 11 mice. Gradient echo 1H and 19F images were obtained at identical anatomical levels. Signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were determined for 33 vessels in both the 19F and 1H images, which was followed by vessel tracking to determine the vessel conspicuity for both modalities.

Results

In vitro, the detection limit was ~400 µM, while the 19F T1 and T2 were 1350±40 and 25±2 ms. The 19F MR angiograms selectively visualized the vasculature (and the liver parenchyma over time) while precisely coregistering with the 1H images. Due to the lower SNR of 19F compared to 1H (17±8 vs. 83±49, p<0.001), the 19F CNR was also lower at 15±8 vs. 52±35 (p<0.001). Vessel tracking demonstrated a significantly higher vessel sharpness in the 19F images (66±11 vs. 56±12, p?=?0.002).

Conclusion

19F magnetic resonance angiography of intravenously administered perfluorocarbon emulsions is feasible for a selective and exclusive visualization of the vasculature in vivo.

  More...