BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

Free Newsletters
My Subscriptions

News by Subject
News by Disease
News by Date
Search News
Post Your News

Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Pharm Country
  Bio NC
  Southern Pharm
  BioCanada East
  C2C Services & Suppliers™


Company Profiles

Research Store

Research Events
Post an Event
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Diabetes and Endocrinology - Physiology - Urology

Glucose is a pH-Dependent Motor for Sperm Beat Frequency during Early Activation
Published: Friday, July 20, 2012
Author: Nadja Mannowetz et al.

by Nadja Mannowetz, Petra M. Wandernoth, Gunther Wennemuth

To reach the egg in the ampulla, sperm have to travel along the female genital tract, thereby being dependent on external energy sources and substances to maintain and raise the flagellar beat. The vaginal fluid is rich in lactate, whereas in the uterine fluid glucose is the predominant substrate. This evokes changes in the lactate content of sperm as well as in the intracellular pH (pHi) since sperm possess lactate/proton co-transporters. It is well documented that glycolysis yields ATP and that HCO3- is a potent factor in the increase of beat frequency. We here show for the first time a pathway that connects both parts. We demonstrate a doubling of beat frequency in the mere presence of glucose. This effect can reversibly be blocked by 2-deoxy-D-glucose, dichloroacetate and aminooxyacetate, strongly suggesting that it requires both glycolysis and mitochondrial oxidation of glycolytic end products. We show that the glucose-mediated acceleration of flagellar beat and ATP production are hastened by a pHi =7.1, whereas a pHi =7.1 leaves both parameters unchanged. Since we observed a diminished rise in beat frequency in the presence of specific inhibitors against carbonic anhydrases, soluble adenylyl cyclase and protein kinase, we suggest that the glucose-mediated effect is linked to CO2 hydration and thus the production of HCO3- by intracellular CA isoforms. In summary, we propose that, in sperm, glycolysis is an additional pHi-dependent way to produce HCO3-, thus enhancing sperm beat frequency and contributing to fertility.