BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

Free Newsletters
My Subscriptions

News by Subject
News by Disease
News by Date
Search News
Post Your News

Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Pharm Country
  Bio NC
  Southern Pharm
  BioCanada East
  C2C Services & Suppliers™


Company Profiles

Research Store

Research Events
Post an Event
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Biochemistry - Urology

Lysophosphatidic Acid Enhances Vascular Endothelial Growth Factor-C Expression in Human Prostate Cancer PC-3 Cells
Published: Friday, July 20, 2012
Author: Chuan-En Lin et al.

by Chuan-En Lin, Shee-Uan Chen, Chu-Cheng Lin, Chi-Hao Chang, Yueh-Chien Lin, Yu-Ling Tai, Tang-Long Shen, Hsinyu Lee

Clinical evidence suggests that lymphangiogenesis and lymphatic metastasis are important processes during the progression of prostate cancer. Vascular endothelial growth factor (VEGF)-C was shown to be a key regulator in these processes. Our previous studies demonstrated that lysophosphatidic acid (LPA), a low-molecular-weight lipid growth factor, enhances VEGF-C expression in human endothelial cells. We previously demonstrated that the LPA receptor plays an important role in lymphatic development in zebrafish embryos. However, the effects of LPA on VEGF-C expression in prostate cancer are not known. Herein, we demonstrate that LPA up-regulated VEGF-C expression in three different human prostate cancer cell lines. In PC-3 human prostate cancer cells, the enhancing effects of LPA were mediated through both LPA1 and LPA3. In addition, reactive oxygen species (ROS) production and lens epithelium-derived growth factor (LEDGF) expression were involved in LPA1/3-dependent VEGF-C expression. Furthermore, autotaxin (ATX), an enzyme responsible for LPA synthesis, also participates in regulating VEGF-C expression. By interrupting LPA1/3 of PC-3, conditioned medium (CM) -induced human umbilical vein endothelial cell (HUVEC) lymphatic markers expression was also blocked. In summary, we found that LPA enhances VEGF-C expression through activating LPA1/3-, ROS-, and LEDGF-dependent pathways. These novel findings could potentially shed light on developing new strategies for preventing lymphatic metastasis of prostate cancer.