BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  US Device
Europe
Asia

DIVERSITY

PROFILES
Company Profiles

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Research Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Oncology - Urology

Estrogen Receptor ß Activation Impairs Prostatic Regeneration by Inducing Apoptosis in Murine and Human Stem/Progenitor Enriched Cell Populations
Published: Tuesday, July 10, 2012
Author: Shirin Hussain et al.

by Shirin Hussain, Mitchell G. Lawrence, Renea A. Taylor, Camden Yeung-Wah Lo, A. P. C. BioResource, Mark Frydenberg, Stuart J. Ellem, Luc Furic, Gail P. Risbridger

Androgen depletion is the primary treatment for prostate disease; however, it fails to target residual castrate-resistant cells that are regenerative and cells of origin of prostate cancer. Estrogens, like androgens, regulate survival in prostatic cells, and the goal of this study was to determine the advantages of selective activation of estrogen receptor ß (ERß) to induce cell death in stem cells that are castrate-resistant. Here we show two cycles of short-term ERß agonist (8ß-VE2) administration this treatment impairs regeneration, causing cystic atrophy that correlates with sustained depletion of p63+ basal cells. Furthermore, agonist treatment attenuates clonogenicity and self-renewal of murine prostatic stem/progenitor cells and depletes both murine (Lin-Sca1+CD49fhi) and human (CD49fhiTrop2hi) prostatic basal cells. Finally, we demonstrate the combined added benefits of selective stimulation of ERß, including the induction of cell death in quiescent post-castration tissues. Subsequent to castration ERß-induces further apoptosis in basal, luminal and intermediate cells. Our results reveal a novel benefit of ERß activation for prostate disease and suggest that combining selective activation of ERß with androgen-deprivation may be a feasible strategy to target stem cells implicated in the origin of prostatic disease.
  More...

 

//-->