BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  US Device
Europe
Asia

DIVERSITY

PROFILES
Company Profiles

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Research Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Anesthesiology and Pain Management - Critical Care and Emergency Medicine - Immunology - Pharmacology - Physiology - Surgery

Deguelin Attenuates Reperfusion Injury and Improves Outcome after Orthotopic Lung Transplantation in the Rat
Published: Wednesday, June 20, 2012
Author: Patrick Paulus et al.

by Patrick Paulus, Pia Ockelmann, Sabine Tacke, Nora Karnowski, Peter Ellinghaus, Bertram Scheller, Johannes Holfeld, Anja Urbschat, Kai Zacharowski

The main goal of adequate organ preservation is to avoid further cellular metabolism during the phase of ischemia. However, modern preservation solutions do rarely achieve this target. In donor organs hypoxia and ischemia induce a broad spectrum of pathologic molecular mechanisms favoring primary graft dysfunction (PGD) after transplantation. Increased hypoxia-induced transcriptional activity leads to increased vascular permeability which in turn is the soil of a reperfusion edema and the enhancement of a pro-inflammatory response in the graft after reperfusion. We hypothesize that inhibition of the respiration chain in mitochondria and thus inhibition of the hypoxia induced mechanisms might reduce reperfusion edema and consecutively improve survival in vivo. In this study we demonstrate that the rotenoid Deguelin reduces the expression of hypoxia induced target genes, and especially VEGF-A, dose-dependently in hypoxic human lung derived cells. Furthermore, Deguelin significantly suppresses the mRNA expression of the HIF target genes VEGF-A, the pro-inflammatory CXCR4 and ICAM-1 in ischemic lungs vs. control lungs. After lung transplantation, the VEGF-A induced reperfusion-edema is significantly lower in Deguelin-treated animals than in controls. Deguelin-treated rats exhibit a significantly increased survival-rate after transplantation. Additionally, a downregulation of the pro-inflammatory molecules ICAM-1 and CXCR4 and an increase in the recruitment of immunomodulatory monocytes (CD163+ and CD68+) to the transplanted organ involving the IL4 pathway was observed. Therefore, we conclude that ischemic periods preceding reperfusion are mainly responsible for the increased vascular permeability via upregulation of VEGF. Together with this, the resulting endothelial dysfunction also enhances inflammation and consequently lung dysfunction. Deguelin significantly decreases a VEGF-A induced reperfusion edema, induces the recruitment of immunomodulatory monocytes and thus improves organ function and survival after lung transplantation by interfering with hypoxia induced signaling.
  More...

 

//-->