BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

Free Newsletters
My Subscriptions

News by Subject
News by Disease
News by Date
Search News
Post Your News

Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Pharm Country
  Bio NC
  Southern Pharm
  BioCanada East
  C2C Services & Suppliers™


Company Profiles

Research Store

Research Events
Post an Event
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Biotechnology - Geriatrics - Neurological Disorders - Physics

Development and Validation of a New Method to Measure Walking Speed in Free-Living Environments Using the Actibelt® Platform
Published: Friday, August 05, 2011
Author: Michaela Schimpl et al.

by Michaela Schimpl, Christian Lederer, Martin Daumer

Walking speed is a fundamental indicator for human well-being. In a clinical setting, walking speed is typically measured by means of walking tests using different protocols. However, walking speed obtained in this way is unlikely to be representative of the conditions in a free-living environment. Recently, mobile accelerometry has opened up the possibility to extract walking speed from long-time observations in free-living individuals, but the validity of these measurements needs to be determined. In this investigation, we have developed algorithms for walking speed prediction based on 3D accelerometry data (actibelt®) and created a framework using a standardized data set with gold standard annotations to facilitate the validation and comparison of these algorithms. For this purpose 17 healthy subjects operated a newly developed mobile gold standard while walking/running on an indoor track. Subsequently, the validity of 12 candidate algorithms for walking speed prediction ranging from well-known simple approaches like combining step length with frequency to more sophisticated algorithms such as linear and non-linear models was assessed using statistical measures. As a result, a novel algorithm employing support vector regression was found to perform best with a concordance correlation coefficient of 0.93 (95%CI 0.92–0.94) and a coverage probability CP1 of 0.46 (95%CI 0.12–0.70) for a deviation of 0.1 m/s (CP2 0.78, CP3 0.94) when compared to the mobile gold standard while walking indoors. A smaller outdoor experiment confirmed those results with even better coverage probability. We conclude that walking speed thus obtained has the potential to help establish walking speed in free-living environments as a patient-oriented outcome measure.