BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  US Device
Europe
Asia

DIVERSITY

PROFILES
Company Profiles

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Research Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Computer Science

Reordering Hierarchical Tree Based on Bilateral Symmetric Distance
Published: Thursday, August 04, 2011
Author: Minho Chae et al.

by Minho Chae, James J. Chen

Background

In microarray data analysis, hierarchical clustering (HC) is often used to group samples or genes according to their gene expression profiles to study their associations. In a typical HC, nested clustering structures can be quickly identified in a tree. The relationship between objects is lost, however, because clusters rather than individual objects are compared. This results in a tree that is hard to interpret.

Methodology/Principal Findings

This study proposes an ordering method, HC-SYM, which minimizes bilateral symmetric distance of two adjacent clusters in a tree so that similar objects in the clusters are located in the cluster boundaries. The performance of HC-SYM was evaluated by both supervised and unsupervised approaches and compared favourably with other ordering methods.

Conclusions/Significance

The intuitive relationship between objects and flexibility of the HC-SYM method can be very helpful in the exploratory analysis of not only microarray data but also similar high-dimensional data.

  More...

 

//-->