BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  C2C Services & Suppliers™
Europe
Asia

DIVERSITY

PROFILES
Company Profiles

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Research Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Biochemistry - Chemistry - Critical Care and Emergency Medicine

Analytical Investigations of Toxic p-Phenylenediamine (PPD) Levels in Clinical Urine Samples with Special Focus on MALDI-MS/MS
Published: Thursday, August 04, 2011
Author: Gero P. Hooff et al.

by Gero P. Hooff, Nick A. van Huizen, Roland J. W. Meesters, Eduard E. Zijlstra, Mohamed Abdelraheem, Waleed Abdelraheem, Mohamed Hamdouk, Jan Lindemans, Theo M. Luider

Para-phenylenediamine (PPD) is a common chromophoric ingredient in oxidative hair-dyes. In some African countries like Sudan, Egypt and Morocco but also in India this chemical is used alone or in combination with colouring extracts like Henna for dyeing of the hair or the skin. Excessive dermal exposure to PPD mainly leads to the N-mono- and N,N'-diacetylated products (MAPPD, DAPPD) by N-acetyltransferase 1 and 2 (NAT1 and 2) catalyzed reactions. Metabolites and PPD are mainly excreted via renal clearance. Despite a low risk of intoxication when used in due form, there are numerous cases of acute intoxication in those countries every year. At the ENT Hospital - Khartoum (Sudan) alone more than 300 cases are reported every year (~10% fatal), mostly caused by either an accidental or intended (suicidal) high systemic exposure to pure PPD. Intoxication leads to a severe clinical syndrome including laryngeal edema, rhabdomyolysis and subsequent renal failure, neurotoxicity and acute toxic hepatitis. To date, there is no defined clinical treatment or antidote available and treatment is largely supportive. Herein, we show the development of a quick on-site identification assay to facilitate differential diagnosis in the clinic and, more importantly, the implementation of an advanced analytical platform for future in-depth investigations of PPD intoxication and metabolism is described. The current work shows a sensitive (~25 µM) wet chemistry assay, a validated MALDI-MS/MS and HPLC-UV assay for the determination of PPD and its metabolites in human urine. We show the feasibility of the methods for measuring PPD over a range of 50–1000 µM. The validation criteria included linearity, lower limit of quantification (LLOQ), accuracy and precision, recovery and stability. Finally, PPD concentrations were determined in clinical urine samples of cases of acute intoxication and the applied technique was expanded to identify MAPPD and DAPPD in the identical samples.
  More...