BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  C2C Services & Suppliers™
Europe
Asia

DIVERSITY

PROFILES
Company Profiles

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Research Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Biochemistry - Hematology - Molecular Biology - Pathology - Physiology

Expression Profiling Reveals Novel Hypoxic Biomarkers in Peripheral Blood of Adult Mice Exposed to Chronic Hypoxia
Published: Tuesday, May 22, 2012
Author: Matias Mosqueira et al.

by Matias Mosqueira, Gabriel Willmann, Ulrike Zeiger, Tejvir S. Khurana

Hypoxia induces a myriad of changes including an increase in hematocrit due to erythropoietin (EPO) mediated erythropoiesis. While hypoxia is of importance physiologically and clinically, lacunae exist in our knowledge of the systemic and temporal changes in gene expression occurring in blood during the exposure and recovery from hypoxia. To identify these changes expression profiling was conducted on blood obtained from cohorts of C57Bl-10 wild type mice that were maintained at normoxia (NX), exposed for two weeks to normobaric chronic hypoxia (CH) or two weeks of CH followed by two weeks of normoxic recovery (REC). Using stringent bioinformatic cut-offs (0% FDR, 2 fold change cut-off), 230 genes were identified and separated into four distinct temporal categories. Class I) contained 1 transcript up-regulated in both CH and REC; Class II) contained 202 transcripts up-regulated in CH but down-regulated after REC; Class III) contained 9 transcripts down-regulated both in CH and REC; Class IV) contained 18 transcripts down-regulated after CH exposure but up-regulated after REC. Profiling was independently validated and extended by analyzing expression levels of selected genes as novel biomarkers from our profile (e.g. spectrin alpha-1, ubiquitin domain family-1 and pyrroline-5-carboxylate reductase-1) by performing qPCR at 7 different time points during CH and REC. Our identification and characterization of these genes define transcriptome level changes occurring during chronic hypoxia and normoxic recovery as well as novel blood biomarkers that may be useful in monitoring a variety of physiological and pathological conditions associated with hypoxia.
  More...