BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

Free Newsletters
My Subscriptions

News by Subject
News by Disease
News by Date
Search News
Post Your News

Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Pharm Country
  Bio NC
  Southern Pharm
  BioCanada East
  C2C Services & Suppliers™


Company Profiles

Research Store

Research Events
Post an Event
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Non-Clinical Medicine - Pediatrics and Child Health - Public Health and Epidemiology - Respiratory Medicine

Residential Proximity to a Major Roadway Is Associated with Features of Asthma Control in Children
Published: Thursday, May 17, 2012
Author: Meredith S. Brown et al.

by Meredith S. Brown, Stefanie Ebelt Sarnat, Karen A. DeMuth, Lou Ann S. Brown, Denise R. Whitlock, Shanae W. Brown, Paige E. Tolbert, Anne M. Fitzpatrick


While several studies suggest that traffic-related air pollutants are detrimental for respiratory health, few studies have examined relationships between residential proximity to a major roadway and asthma control in children. Furthermore, a major limitation of existing research is reliance on self-reported outcomes. We therefore determined the spatial relationship between the distance from a major roadway and clinical, physiologic and inflammatory features of asthma in a highly characterized sample of asthmatic children 6–17 years of age across a wide range of severities. We hypothesized that a closer residential proximity to a major roadway would be associated with increased respiratory symptoms, altered pulmonary function and a greater magnitude of airway and systemic inflammation.

Methodology/Principal Findings

224 children 6–17 years with confirmed asthma completed questionnaires and underwent spirometry, plethysmography, exhaled nitric oxide determination, exhaled breath condensate collection and venipuncture. Residential distance from a major roadway was determined by mapping the geographic coordinates of the residential address in Geographic Information System software. The distance between the home address and the nearest major roadway was calculated according to the shortest distance between the two points (i.e., “as the crow flies”). Asthmatic children living in closer proximity to a major roadway had an increased frequency of wheezing associated with increased medication requirements and more hospitalizations even after controlling for potential confounders. These children also had increased airway resistance, increased airway inflammation reflected by a lower breath condensate pH, and higher plasma EGF concentrations.


These findings suggest that closer residential proximity to a major roadway is associated with poorer asthma control in school-age children. Assessment of residential proximity to major roadways may be useful in the clinical evaluation of asthma in children.