BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  C2C Services & Suppliers™
Europe
Asia

DIVERSITY

PROFILES
Company Profiles

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Research Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Diabetes and Endocrinology - Radiology and Medical Imaging

Non-Invasive Quantification of White and Brown Adipose Tissues and Liver Fat Content by Computed Tomography in Mice
Published: Wednesday, May 16, 2012
Author: Marko Lubura et al.

by Marko Lubura, Deike Hesse, Nancy Neumann, Stephan Scherneck, Petra Wiedmer, Annette Schürmann

Objectives

Obesity and its distribution pattern are important factors for the prediction of the onset of diabetes in humans. Since several mouse models are suitable to study the pathophysiology of type 2 diabetes the aim was to validate a novel computed tomograph model (Aloka-Hitachi LCT-200) for the quantification of visceral, subcutaneous, brown and intrahepatic fat depots in mice.

Methods

Different lean and obese mouse models (C57BL/6, B6.V-Lepob, NZO) were used to determine the most adequate scanning parameters for the detection of the different fat depots. The data were compared with those obtained after preparation and weighing the fat depots. Liver fat content was determined by biochemical analysis.

Results

The correlations between weights of fat tissues on scale and weights determined by CT were significant for subcutaneous (r2?=?0.995), visceral (r2?=?0.990) and total white adipose tissue (r2?=?0.992). Moreover, scans in the abdominal region, between lumbar vertebrae L4 to L5 correlated with whole-body fat distribution allowing experimenters to reduce scanning time and animal exposure to radiation and anesthesia. Test-retest reliability and measurements conducted by different experimenters showed a high reproducibility in the obtained results. Intrahepatic fat content estimated by CT was linearly related to biochemical analysis (r2?=?0.915). Furthermore, brown fat mass correlated well with weighted brown fat depots (r2?=?0.952). In addition, short-term cold-expose (4°C, 4 hours) led to alterations in brown adipose tissue attributed to a reduction in triglyceride content that can be visualized as an increase in Hounsfield units by CT imaging.

Conclusion

The 3D imaging of fat by CT provides reliable results in the quantification of total, visceral, subcutaneous, brown and intrahepatic fat in mice. This non-invasive method allows the conduction of longitudinal studies of obesity in mice and therefore enables experimenters to investigate the onset of complex diseases such as diabetes and obesity.

  More...