BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

Free Newsletters
My Subscriptions

News by Subject
News by Disease
News by Date
Search News
Post Your News

Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Pharm Country
  Bio NC
  Southern Pharm
  BioCanada East
  C2C Services & Suppliers™


Company Profiles

Research Store

Research Events
Post an Event
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Ecology - Infectious Diseases - Microbiology - Urology - Virology

Daily Sampling of an HIV-1 Patient with Slowly Progressing Disease Displays Persistence of Multiple env Subpopulations Consistent with Neutrality
Published: Tuesday, August 02, 2011
Author: Helena Skar et al.

by Helena Skar, Ryan N. Gutenkunst, Karin Wilbe Ramsay, Annette Alaeus, Jan Albert, Thomas Leitner

The molecular evolution of HIV-1 is characterized by frequent substitutions, indels and recombination events. In addition, a HIV-1 population may adapt through frequency changes of its variants. To reveal such population dynamics we analyzed HIV-1 subpopulation frequencies in an untreated patient with stable, low plasma HIV-1 RNA levels and close to normal CD4+ T-cell levels. The patient was intensively sampled during a 32-day period as well as approximately 1.5 years before and after this period (days -664, 1, 2, 3, 11, 18, 25, 32 and 522). 77 sequences of HIV-1 env (approximately 3100 nucleotides) were obtained from plasma by limiting dilution with 7–11 sequences per time point, except day -664. Phylogenetic analysis using maximum likelihood methods showed that the sequences clustered in six distinct subpopulations. We devised a method that took into account the relatively coarse sampling of the population. Data from days 1 through 32 were consistent with constant within-patient subpopulation frequencies. However, over longer time periods, i.e. between days 1…32 and 522, there were significant changes in subpopulation frequencies, which were consistent with evolutionarily neutral fluctuations. We found no clear signal of natural selection within the subpopulations over the study period, but positive selection was evident on the long branches that connected the subpopulations, which corresponds to >3 years as the subpopulations already were established when we started the study. Thus, selective forces may have been involved when the subpopulations were established. Genetic drift within subpopulations caused by de novo substitutions could be resolved after approximately one month. Overall, we conclude that subpopulation frequencies within this patient changed significantly over a time period of 1.5 years, but that this does not imply directional or balancing selection. We show that the short-term evolution we study here is likely representative for many patients of slow and normal disease progression.