BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  US Device
Europe
Asia

DIVERSITY

PROFILES
Company Profiles

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Research Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Chemical Biology

Differential Neuroprotective Activity of Two Different Grape Seed Extracts
Published: Monday, January 24, 2011
Author: Keishi Narita et al.

by Keishi Narita, Masashi Hisamoto, Tohru Okuda, Sen Takeda

Glutamate excitotoxicity is one of the major events that takes place during various neurotoxic injuries such as brain ischemia. We prepared grape seed extracts, from two different varieties, containing high amounts of polyphenols but little resveratrol. Their neuroprotective effects were investigated using primary culture of neonatal mouse hippocampal neurons treated with an excitotoxic concentration of glutamate. Koshu, a white, local variety of V. vinifera, alleviated the acute inactivation of Erk1/2 and dendrite retraction in cultured hippocampal neurons exposed to a toxic concentration of glutamate (1.0 ng/ml). By contrast, Muscat Bailey A, a red, hybrid variety (Muscat Humburg × Bailey), failed to show any neuroprotective effect. Unlike brain-derived neurotrophic factor and other neuroprotective cytokines, Koshu extract did not induce Akt phosphorylation. Koshu extract also augmented neuron survival rate 24 hours after glutamate toxicity. The comparison of polyphenols between the two samples by liquid chromatography/time-of-flight mass spectrometry demonstrated that Koshu had higher amounts of low molecular weight polyphenols along with several Koshu-specific procyanidin oligomers. These data suggest the presence of high affinity molecular targets for polyphenols in hippocampal neurons, which induce neuroprotective effects in a manner different from BDNF, and the importance of low molecular weight polyphenols and/or procyanidin oligomers for neuroprotection.
  More...

 

//-->