BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  US Device
Europe
Asia

DIVERSITY

PROFILES
Company Profiles

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Research Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Infectious Diseases - Microbiology - Urology - Virology

Quantification of Unintegrated HIV-1 DNA at the Single Cell Level In Vivo
Published: Friday, May 04, 2012
Author: Rodolphe Suspène et al.

by Rodolphe Suspène, Andreas Meyerhans

In the nucleus of HIV-1 infected cells, unintegrated HIV-1 DNA molecules exist in the form of one and two LTR circles and linear molecules with degraded extremities. In tissue culture they are invariably more numerous than the provirus, the relative proportion of integrated to unintegrated forms varies widely from ~1:1 to 1:10 and even over 1:100. In vivo, this ratio is unknown. To determine it, single nuclei from two infected patients with a known provirus copy number were microdissected, HIV DNA was amplified by nested PCR, cloned and individual clones sequenced. Given the extraordinary sequence complexity, we made the assumption that the total number of distinct sequences approximated to real number of amplifiable HIV-1 DNA templates in the nucleus. We found that the number of unintegrated DNA molecules increased linearly with the proviral copy number there being on average 86 unintegrated molecules per provirus.
  More...

 

//-->