BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  US Device
Europe
Asia

DIVERSITY

PROFILES
Company Profiles

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Research Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Anesthesiology and Pain Management - Neuroscience - Physiology - Surgery

Dendritic Spines and Pre-Synaptic Boutons Are Stable Despite Local Deep Hypothermic Challenge and Re-Warming In Vivo
Published: Tuesday, May 01, 2012
Author: Yicheng Xie et al.

by Yicheng Xie, Shangbin Chen, Timothy Murphy

Background and Purpose

Deep hypothermia to 20°C is used clinically for major pediatric and adult surgical procedures. In particular, it is used in the “standstill operation" where blood flow is stopped for up to 30 min. Patients recovering from these procedures can exhibit neurological deficits. Such deficits could arise from changes to dendritic spines and plasticity-induced changes in network function as a result of cooling and/or re-warming. In the brain, each dendritic spine represents a single excitatory synapse and their number can be reflective of injury or plasticity-induced changes in network function. This research sought to determine whether deep hypothermia and re-warming have detrimental effects on synaptic stability and network function.

Methods

In vivo 2-photon (2-P) imaging in green/yellow fluorescent protein (GFP/YFP)-expressing transgenic mice was performed to determine whether 4 hours of deep hypothermia and 2 hours of re-warming can have relatively covert effects on dendritic spine and presynaptic bouton stability. At the same time, electroencephalographic (EEG) activity was recorded to evaluate network function during deep hypothermia and re-warming.

Results

We report that deep hypothermia and subsequent re-warming did not change the stability of dendritic spines or presynaptic boutons in mouse somatosensory cortex measured over 8 hours. As expected, deep hypothermia attenuated ongoing EEG activity over 0.1–80 Hz frequencies. The effects on EEG activity were fully reversible following re-warming.

Conclusion

These results are consistent with deep hypothermia being a safe treatment which could be applied clinically to those undergoing major elective surgical procedures.

  More...

 

//-->