BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  C2C Services & Suppliers™
Europe
Asia

DIVERSITY

PROFILES
Company Profiles

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Research Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Neurological Disorders - Neuroscience - Physiology - Radiology and Medical Imaging

Assessing Corpus Callosum Changes in Alzheimer's Disease: Comparison between Tract-Based Spatial Statistics and Atlas-Based Tractography
Published: Tuesday, April 24, 2012
Author: Maria Giulia Preti et al.

by Maria Giulia Preti, Francesca Baglio, Maria Marcella Laganà, Ludovica Griffanti, Raffaello Nemni, Mario Clerici, Marco Bozzali, Giuseppe Baselli

Tractography based on Diffusion Tensor Imaging (DTI) represents a valuable tool for investigating brain white matter (WM) microstructure, allowing the computation of damage-related diffusion parameters such as Fractional Anisotropy (FA) in specific WM tracts. This technique appears relevant in the study of pathologies in which brain disconnection plays a major role, such as, for instance, Alzheimer's Disease (AD). Previous DTI studies have reported inconsistent results in defining WM abnormalities in AD and in its prodromal stage (i.e., amnestic Mild Cognitive Impairment; aMCI), especially when investigating the corpus callosum (CC). A reason for these inconsistencies is the use of different processing techniques, which may strongly influence the results. The aim of the current study was to compare a novel atlas-based tractography approach, that sub-divides the CC in eight portions, with Tract-Based Spatial Statistics (TBSS) when used to detect specific patterns of CC FA in AD at different clinical stages. FA data were obtained from 76 subjects (37 with mild AD, 19 with aMCI and 20 elderly healthy controls, HC) and analyzed using both methods. Consistent results were obtained for the two methods, concerning the comparisons AD vs. HC (significantly reduced FA in the whole CC of AD patients) and AD vs. aMCI (significantly reduced FA in the frontal portions of the CC in AD patients), thus identifying a relative preservation of the frontal CC regions in aMCI patients compared to AD. Conversely, the atlas-based method but not the TBSS showed the ability to detect a selective FA change in the CC parietal, left temporal and occipital regions of aMCI patients compared to HC. This finding indicates that an analysis including a higher number of voxels (with no restriction to tract skeletons) may detect characteristic pattern of FA in the CC of patients with preclinical AD, when brain atrophy is still modest.
  More...