BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

Free Newsletters
My Subscriptions

News by Subject
News by Disease
News by Date
Search News
Post Your News

Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Pharm Country
  Bio NC
  Southern Pharm
  BioCanada East
  C2C Services & Suppliers™


Company Profiles

Research Store

Research Events
Post an Event
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Chemistry - Hematology - Radiology and Medical Imaging

In-Vivo Biodistribution and Safety of 99mTc-LLP2A-HYNIC in Canine Non-Hodgkin Lymphoma
Published: Tuesday, April 24, 2012
Author: Allison L. Zwingenberger et al.

by Allison L. Zwingenberger, Michael S. Kent, Ruiwu Liu, David L. Kukis, Erik R. Wisner, Sally J. DeNardo, Sandra L. Taylor, Xiucui Chen, Kit S. Lam

Theranostic agents are critical for improving the diagnosis and treatment of non-Hodgkin Lymphoma (NHL). The peptidomimetic LLP2A is a novel peptide receptor radiotherapy candidate for treating NHL that expresses the activated a4ß1 integrin. Tumor-bearing dogs are an excellent model of human NHL with similar clinical characteristics, behavior, and compressed clinical course. Canine in vivo imaging studies will provide valuable biodistribution and affinity information that reflects a diverse clinical population of lymphoma. This may also help to determine potential dose-limiting radiotoxicity to organs in human clinical trials. To validate this construct in a naturally occurring model of NHL, we performed in-vivo molecular targeted imaging and biodistribution in 3 normal dogs and 5 NHL bearing dogs. 99mTc-LLP2A-HYNIC-PEG and 99mTc-LLP2A-HYNIC were successfully synthesized and had very good labeling efficiency and radiochemical purity. 99mTc-LLP2A-HYNIC and 99mTc-LLP2A-HYNIC-PEG had biodistribution in keeping with their molecular size, with 99mTc-LLP2A-HYNIC-PEG remaining longer in the circulation, having higher tissue uptake, and having more activity in the liver compared to 99mTc-LLP2A-HYNIC. 99mTc-LLP2A-HYNIC was mainly eliminated through the kidneys with some residual activity. Radioactivity was reduced to near-background levels at 6 hours after injection. In NHL dogs, tumor showed moderately increased activity over background, with tumor activity in B-cell lymphoma dogs decreasing after chemotherapy. This compound is promising in the development of targeted drug-delivery radiopharmaceuticals and may contribute to translational work in people affected by non-Hodgkin lymphoma.