BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  US Device
Europe
Asia

DIVERSITY

PROFILES
Company Profiles

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Research Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Mathematics - Microbiology - Pediatrics and Child Health - Respiratory Medicine

Comparison of DNA Extraction Methods for Microbial Community Profiling with an Application to Pediatric Bronchoalveolar Lavage Samples
Published: Friday, April 13, 2012
Author: Dana Willner et al.

by Dana Willner, Joshua Daly, David Whiley, Keith Grimwood, Claire E. Wainwright, Philip Hugenholtz

Barcoded amplicon sequencing is rapidly becoming a standard method for profiling microbial communities, including the human respiratory microbiome. While this approach has less bias than standard cultivation, several steps can introduce variation including the type of DNA extraction method used. Here we assessed five different extraction methods on pediatric bronchoalveolar lavage (BAL) samples and a mock community comprised of nine bacterial genera to determine method reproducibility and detection limits for these typically low complexity communities. Additionally, using the mock community, we were able to evaluate contamination and select a relative abundance cut-off threshold based on the geometric distribution that optimizes the trade off between detecting bona fide operational taxonomic units and filtering out spurious ones. Using this threshold, the majority of genera in the mock community were predictably detected by all extraction methods including the hard-to-lyse Gram-positive genus Staphylococcus. Differences between extraction methods were significantly greater than between technical replicates for both the mock community and BAL samples emphasizing the importance of using a standardized methodology for microbiome studies. However, regardless of method used, individual patients retained unique diagnostic profiles. Furthermore, despite being stored as raw frozen samples for over five years, community profiles from BAL samples were consistent with historical culturing results. The culture-independent profiling of these samples also identified a number of anaerobic genera that are gaining acceptance as being part of the respiratory microbiome. This study should help guide researchers to formulate sampling, extraction and analysis strategies for respiratory and other human microbiome samples.
  More...

 

//-->