BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

Free Newsletters
My Subscriptions

News by Subject
News by Disease
News by Date
Search News
Post Your News

Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Pharm Country
  Bio NC
  Southern Pharm
  BioCanada East
  C2C Services & Suppliers™


Company Profiles

Research Store

Research Events
Post an Event
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Neurological Disorders - Neuroscience - Physiology - Respiratory Medicine

Increased Sleep Fragmentation Leads to Impaired Off-Line Consolidation of Motor Memories in Humans
Published: Wednesday, March 28, 2012
Author: Ina Djonlagic et al.

by Ina Djonlagic, Julian Saboisky, Andrea Carusona, Robert Stickgold, Atul Malhotra

A growing literature supports a role for sleep after training in long-term memory consolidation and enhancement. Consequently, interrupted sleep should result in cognitive deficits. Recent evidence from an animal study indeed showed that optimal memory consolidation during sleep requires a certain amount of uninterrupted sleep. Sleep continuity is disrupted in various medical disorders. We compared performance on a motor sequence learning task (MST) in relatively young subjects with obstructive sleep apnea (n?=?16; apnea-hypopnea index 17.1±2.6/h [SEM]) to a carefully matched control group (n?=?15, apnea-hypopnea index 3.7±0.4/h, p<0.001. Apart from AHI, oxygen nadir and arousal index, there were no significant differences between groups in total sleep time, sleep efficiency and sleep architecture as well as subjective measures of sleepiness based on standard questionnaires. In addition performance on the psychomotor vigilance task (reaction time and lapses), which is highly sensitive to sleep deprivation showed no differences as well as initial learning performance during the training phase. However there was a significant difference in the primary outcome of immediate overnight improvement on the MST between the two groups (controls?=?14.7±4%, patients?=?1.1±3.6%; P?=?0.023) as well as plateau performance (controls?=?24.0±5.3%, patients?=?10.1±2.0%; P?=?0.017) and this difference was predicted by the arousal index (p?=?0.02) rather than oxygen saturation (nadir and time below 90% saturation. Taken together, this outcome provides evidence that there is a clear minimum requirement of sleep continuity in humans to ensure optimal sleep dependent memory processes. It also provides important new information about the cognitive impact of obstructive sleep apnea and challenges its current definitions.