BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  C2C Services & Suppliers™
Europe
Asia

DIVERSITY

PROFILES
Company Profiles

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Research Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Anesthesiology and Pain Management - Biotechnology - Surgery

EEG-Based Automatic Classification of ‘Awake’ versus ‘Anesthetized’ State in General Anesthesia Using Granger Causality
Published: Thursday, March 22, 2012
Author: Nicoletta Nicolaou et al.

by Nicoletta Nicolaou, Saverios Hourris, Pandelitsa Alexandrou, Julius Georgiou

Background

General anesthesia is a reversible state of unconsciousness and depression of reflexes to afferent stimuli induced by administration of a “cocktail” of chemical agents. The multi-component nature of general anesthesia complicates the identification of the precise mechanisms by which anesthetics disrupt consciousness. Devices that monitor the depth of anesthesia are an important aide for the anesthetist. This paper investigates the use of effective connectivity measures from human electrical brain activity as a means of discriminating between ‘awake’ and ‘anesthetized’ state during induction and recovery of consciousness under general anesthesia.

Methodology/Principal Findings

Granger Causality (GC), a linear measure of effective connectivity, is utilized in automated classification of ‘awake’ versus ‘anesthetized’ state using Linear Discriminant Analysis and Support Vector Machines (with linear and non-linear kernel). Based on our investigations, the most characteristic change of GC observed between the two states is the sharp increase of GC from frontal to posterior regions when the subject was anesthetized, and reversal at recovery of consciousness. Features derived from the GC estimates resulted in classification of ‘awake’ and ‘anesthetized’ states in 21 patients with maximum average accuracies of 0.98 and 0.95, during loss and recovery of consciousness respectively. The differences in linear and non-linear classification are not statistically significant, implying that GC features are linearly separable, eliminating the need for a complex and computationally expensive non-linear classifier. In addition, the observed GC patterns are particularly interesting in terms of a physiological interpretation of the disruption of consciousness by anesthetics. Bidirectional interaction or strong unidirectional interaction in the presence of a common input as captured by GC are most likely related to mechanisms of information flow in cortical circuits.

Conclusions/Significance

GC-based features could be utilized effectively in a device for monitoring depth of anesthesia during surgery.

  More...