BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  C2C Services & Suppliers™
Europe
Asia

DIVERSITY

PROFILES
Company Profiles

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Research Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Immunology - Rheumatology

Validation Study of Existing Gene Expression Signatures for Anti-TNF Treatment in Patients with Rheumatoid Arthritis
Published: Wednesday, March 21, 2012
Author: Erik J. M. Toonen et al.

by Erik J. M. Toonen, Christian Gilissen, Barbara Franke, Wietske Kievit, Agnes M. Eijsbouts, Alfons A. den Broeder, Simon V. van Reijmersdal, Joris A. Veltman, Hans Scheffer, Timothy R. D. J. Radstake, Piet L. C. M. van Riel, Pilar Barrera, Marieke J. H. Coenen

So far, there are no means of identifying rheumatoid arthritis (RA) patients who will fail to respond to tumour necrosis factor blocking agents (anti-TNF), prior to treatment. We set out to validate eight previously reported gene expression signatures predicting therapy outcome. Genome-wide expression profiling using Affymetrix GeneChip Exon 1.0 ST arrays was performed on RNA isolated from whole blood of 42 RA patients starting treatment with infliximab or adalimumab. Clinical response according to EULAR criteria was determined at week 14 of therapy. Genes that have been reported to be associated with anti-TNF treatment were extracted from our dataset. K-means partition clustering was performed to assess the predictive value of the gene-sets. We performed a hypothesis-driven analysis of the dataset using eight existing gene sets predictive of anti-TNF treatment outcome. The set that performed best reached a sensitivity of 71% and a specificity of 61%, for classifying the patients in the current study. We successfully validated one of eight previously reported predictive expression profile. This replicated expression signature is a good starting point for developing a prediction model for anti-TNF treatment outcome that can be used in a daily clinical setting. Our results confirm that gene expression profiling prior to treatment is a useful tool to predict anti-TNF (non) response.
  More...