BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

Free Newsletters
My Subscriptions

News by Subject
News by Disease
News by Date
Search News
Post Your News

Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Pharm Country
  Bio NC
  Southern Pharm
  BioCanada East
  C2C Services & Suppliers™


Company Profiles

Research Store

Research Events
Post an Event
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Biochemistry - Critical Care and Emergency Medicine - Neuroscience - Pediatrics and Child Health - Physiology

Inhaled NO Contributes to Lung Repair in Piglets with Acute Respiratory Distress Syndrome via Increasing Circulating Endothelial Progenitor Cells
Published: Tuesday, March 20, 2012
Author: Yuanyuan Qi et al.

by Yuanyuan Qi, Liling Qian, Bo Sun, Lijuan Liu, Panpan Wu, Libo Sun


Nitric oxide (NO) plays an important role in mobilization of endothelial progenitor cells (EPCs). We hypothesized that inhaled NO (iNO) would induce EPC mobilization and therefore promote lung repair in acute respiratory distress syndrome (ARDS).

Methodology/Principal Findings

Healthy piglets were randomized into four groups (n?=?6): Control (Con; mechanical ventilation only); ARDS (established by oleic acid infusion and mechanical ventilation); ARDS plus granulocyte-colony stimulating factor (G-CSF; 10 µg/kg/d subcutaneously); ARDS plus NO inhalation (iNO; 10 ppm). EPCs and mobilizing cytokines were assayed at different time points (baseline, 0, 24, 72 and 168 h) and injury reparation was assessed at 168 h. Compared to the Con group, the levels of EPCs were increased in bone marrow but not in blood in the ARDS group at 24 h. Compared to the ARDS group, inhaled NO induced a rapid elevation in the number of CD34+KDR+, KDR+CD133+ and CD34+KDR+CD133+ EPCs in blood (2163±454 vs. 1094±416, 1302±413 vs. 429±244, 1140±494 vs. 453±273 cells/ml, respectively, P<0.05), and a reduction in the percentage of KDR+CD133+ cells in bone marrow. Lung CD34, CD133, VEGF, VEGF receptor 2, endothelial NO synthase mRNA, and VEGF and VEGF receptor 2 protein expression levels were augmented in the iNO group, but not in the G-CSF group, compared to ARDS. Furthermore, iNO treatment reduced vascular permeability, increased pulmonary vessel density, and alleviated pulmonary edema and inflammation compared to ARDS treatment. Plasma VEGF, stromal cell-derived factor-1 (SDF-1) and bone marrow NO2-/NO3- were significantly higher in the iNO group compared to the ARDS group at 72 h.


These results suggest that iNO induces mobilization of EPCs from bone marrow into circulation, contributes to vascular repair, and thereby alleviates lung damage.