BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  US Device
Europe
Asia

DIVERSITY

PROFILES
Company Profiles

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Research Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Biochemistry - Computer Science - Hematology - Oncology

miR-181a Post-Transcriptionally Downregulates Oncogenic RalA and Contributes to Growth Inhibition and Apoptosis in Chronic Myelogenous Leukemia (CML)
Published: Monday, March 19, 2012
Author: Jia Fei et al.

by Jia Fei, Yumin Li, Xuejiao Zhu, Xiaochuang Luo

MicroRNAs (miRNAs) are a class of short RNAs that regulate gene expression through either translational repression or mRNA cleavage. miRNA-181a (miR-181a), one of the many miRNAs conserved among vertebrates, is differentially expressed in a variety of leukemia. However, its function in leukemia, particularly chronic myelogenous leukemia (CML), is poorly understood. Here we have reported the identification of miR-181a targets by combining TargetScan software prediction and expression profiling through overexpression of miR-181a mimic in leukemic K562 cells. Four overlapping genes were found to be the likely targets of miR-181a. Among the four genes, RalA is a downstream molecule of bcr-abl fusion protein in ras signaling pathway. However, its role in CML remains elusive. Luciferase reporter and Western blot assays confirmed that RalA is a direct target of miR-181a. overexpression of miR-181a effectively suppresses cell growth and induces G2-phase arrest and apoptosis partially by targeting RalA in leukemic K562 cells. Using the KEGG database combined with recent publications, downstream signaling pathway of RalA was graphed by cytoscape software. Therefore, our study is the first to report that RalA is directly regulated by miR-181a and plays an important role in CML. The approach of computational prediction combined with expression profiling might be valuable for the identification of miRNA targets in animal.
  More...

 

//-->