BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  US Device
Europe
Asia

DIVERSITY

PROFILES
Company Profiles

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Research Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Biochemistry - Immunology - Physiology - Rheumatology

Glucocorticoid-Induced Leucine Zipper (GILZ) Antagonizes TNF-a Inhibition of Mesenchymal Stem Cell Osteogenic Differentiation
Published: Friday, March 02, 2012
Author: Linlin He et al.

by Linlin He, Nianlan Yang, Carlos M. Isales, Xing-Ming Shi

Tumor necrosis factor-alpha (TNF-a) is a potent proinflammatory cytokine that inhibits osteoblast differentiation while stimulating osteoclast differentiation and bone resorption. TNF-a activates MAP kinase pathway leading to inhibition of osterix (Osx) expression. TNF-a also induces the expression of E3 ubiquitin ligase protein Smurf1 and Smurf2 and promotes degradation of Runx2, another key transcription factor regulating osteoblast differentiation and bone formation. We showed previously that overexpression of glucocorticoid (GC)-induced leucine zipper (GILZ) enhances osteogenic differentiation of bone marrow mesenchymal stem cells (MSCs). We and others also showed that GILZ is a GC effecter and mediates GC anti-inflammatory activity. In this study, we asked the question whether GILZ retains its osteogenic activity while functioning as an anti-inflammatory mediator. To address this question, we infected mouse bone marrow MSCs with retroviruses expressing GILZ and induced them for osteogenic differentiation in the presence or absence of TNF-a. Our results show that overexpression of GILZ antagonized the inhibitory effects of TNF-a on MSC osteogenic differentiation and the mRNA and protein expression of Osx and Runx2, two pivotal osteogenic regulators. Further studies show that these antagonistic actions occur via mechanisms involving GILZ inhibition of TNF-a-induced ERK MAP kinase activation and protein degradation. These results suggest that GILZ may have therapeutic potential as a novel anti-inflammation therapy.
  More...

 

//-->