BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

Free Newsletters
My Subscriptions

News by Subject
News by Disease
News by Date
Search News
Post Your News

Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Pharm Country
  Bio NC
  Southern Pharm
  BioCanada East
  C2C Services & Suppliers™


Company Profiles

Research Store

Research Events
Post an Event
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Biochemistry - Infectious Diseases - Urology

Placement of Leucine Zipper Motifs at the Carboxyl Terminus of HIV-1 Protease Significantly Reduces Virion Production
Published: Thursday, March 01, 2012
Author: Yen-Yu Pan et al.

by Yen-Yu Pan, Shiu-Mei Wang, Kuo-Jung Huang, Chien-Cheng Chiang, Chin-Tien Wang

Natural HIV-1 protease (PR) is homodimeric. Some researchers believe that interactions between HIV-1 Gag-Pol molecules trigger the activation of embedded PR (which mediates Gag and Gag-Pol cleavage), and that Gag-Pol assembly domains outside of PR may contribute to PR activation by influencing PR dimer interaction in a Gag-Pol context. To determine if the enhancement of PR dimer interaction facilitates PR activation, we placed single or tandem repeat leucine zippers (LZ) at the PR C-terminus, and looked for a correlation between enhanced Gag processing efficiency and increased Gag-PR-LZ multimerization capacity. We found significant reductions in virus-like particles (VLPs) produced by HIV-1 mutants, with LZ fused to the end of PR as a result of enhanced Gag cleavage efficiency. Since VLP production can be restored to wt levels following PR activity inhibition, this assembly defect is considered PR activity-dependent. We also found a correlation between the LZ enhancement effect on Gag cleavage and enhanced Gag-PR multimerization. The results suggest that PR dimer interactions facilitated by forced Gag-PR multimerization lead to premature Gag cleavage, likely a result of premature PR activation. Our conclusion is that placement of a heterologous dimerization domain downstream of PR enhances PR-mediated Gag cleavage efficiency, implying that structural conformation, rather than the primary sequence outside of PR, is a major determinant of HIV-1 PR activation.