BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

Free Newsletters
My Subscriptions

News by Subject
News by Disease
News by Date
Search News
Post Your News

Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Pharm Country
  Bio NC
  Southern Pharm
  BioCanada East
  C2C Services & Suppliers™


Company Profiles

Research Store

Research Events
Post an Event
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Hematology - Immunology - Oncology

Inhibition of TACE Activity Enhances the Susceptibility of Myeloma Cells to TRAIL
Published: Tuesday, February 28, 2012
Author: Kumiko Kagawa et al.

by Kumiko Kagawa, Ayako Nakano, Hirokazu Miki, Asuka Oda, Hiroe Amou, Kyoko Takeuchi, Shingen Nakamura, Takeshi Harada, Shiro Fujii, Kenichiro Yata, Shuji Ozaki, Toshio Matsumoto, Masahiro Abe


TNF-related apoptosis-inducing ligand/Apo2 ligand (TRAIL/Apo2L) selectively induces apoptosis in various cancer cells including myeloma (MM) cells. However, the susceptibility of MM cells to TRAIL is largely low in most of MM cells by yet largely unknown mechanisms. Because TNF-a converting enzyme (TACE) can cleave some TNF receptor family members, in the present study we explored the roles of proteolytic modulation by TACE in TRAIL receptor expression and TRAIL-mediated cytotoxicity in MM cells.

Methodology/Principal Findings

MM cells preferentially expressed death receptor 4 (DR4) but not DR5 on their surface along with TACE. Conditioned media from RPMI8226 and U266 cells contained a soluble form of DR4. The DR4 levels in these conditioned media were reduced by TACE inhibition by the TACE inhibitor TAPI-0 as well as TACE siRNA. Conversely, the TACE inhibition restored surface levels of DR4 but not DR5 in these cells without affecting DR4 mRNA levels. The TACE inhibition was able to restore cell surface DR4 expression in MM cells even in the presence of bone marrow stromal cells or osteoclasts, and enhanced the cytotoxic effects of recombinant TRAIL and an agonistic antibody against DR4 on MM cells.


These results demonstrate that MM cells post-translationally down-modulate the cell surface expression of DR4 through ectodomain shedding by endogenous TACE, and that TACE inhibition is able to restore cell surface DR4 levels and the susceptibility of MM cells to TRAIL or an agonistic antibody against DR4. Thus, TACE may protect MM cells from TRAIL-mediated death through down-modulation of cell-surface DR4. It can be envisaged that TACE inhibition augments clinical efficacy of TRAIL-based immunotherapy against MM, which eventually becomes resistant to the present therapeutic modalities.