BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  C2C Services & Suppliers™
Europe
Asia

DIVERSITY

PROFILES
Company Profiles

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Research Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Biochemistry - Diabetes and Endocrinology - Pediatrics and Child Health - Physiology - Public Health and Epidemiology

Increasing Incidence and Age at Diagnosis among Children with Type 1 Diabetes Mellitus over a 20-Year Period in Auckland (New Zealand)
Published: Tuesday, February 28, 2012
Author: José G. B. Derraik et al.

by José G. B. Derraik, Peter W. Reed, Craig Jefferies, Samuel W. Cutfield, Paul L. Hofman, Wayne S. Cutfield

Background

We aimed to evaluate the incidence of type 1 diabetes mellitus in children <15 years of age (yr) in the Auckland region (New Zealand) over 20 years (1990–2009).

Methods

We performed a retrospective review of all patients <15 yr diagnosed with type 1 diabetes, from an unselected complete regional cohort.

Results

There were 884 new cases of type 1 diabetes, and age at diagnosis rose from 7.6 yr in 1990/1 to 8.9 yr in 2008/9 (r2?=?0.31, p?=?0.009). There was a progressive increase in type 1 diabetes incidence among children <15 yr (p<0.0001), reaching 22.5 per 100,000 in 2009. However, the rise in incidence did not occur evenly among age groups, being 2.5-fold higher in older children (10–14 yr) than in the youngest group (0–4 yr). The incidence of new cases of type 1 diabetes was highest in New Zealand Europeans throughout the study period in all age groups (p<0.0001), but the rate of increase was similar in New Zealand Europeans and Non-Europeans. Type 1 diabetes incidence and average annual increase were similar in both sexes. There was no change in BMI SDS shortly after diagnosis, and no association between BMI SDS and age at diagnosis.

Conclusions

There has been a steady increase in type 1 diabetes incidence among children <15 yr in Auckland over 20 years. Contrary to other studies, age at diagnosis has increased and the greatest rise in incidence occurred in children 10–14 yr. There was little change in BMI SDS in this population, providing no support for the ‘accelerator hypothesis’.

  More...