BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  C2C Services & Suppliers™
Europe
Asia

DIVERSITY

PROFILES
Company Profiles

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Research Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Computer Science

Generation of Artificial FASTQ Files to Evaluate the Performance of Next-Generation Sequencing Pipelines
Published: Monday, November 12, 2012
Author: Matthew Frampton et al.

by Matthew Frampton, Richard Houlston

Pipelines for the analysis of Next-Generation Sequencing (NGS) data are generally composed of a set of different publicly available software, configured together in order to map short reads of a genome and call variants. The fidelity of pipelines is variable. We have developed ArtificialFastqGenerator, which takes a reference genome sequence as input and outputs artificial paired-end FASTQ files containing Phred quality scores. Since these artificial FASTQs are derived from the reference genome, it provides a gold-standard for read-alignment and variant-calling, thereby enabling the performance of any NGS pipeline to be evaluated. The user can customise DNA template/read length, the modelling of coverage based on GC content, whether to use real Phred base quality scores taken from existing FASTQ files, and whether to simulate sequencing errors. Detailed coverage and error summary statistics are outputted. Here we describe ArtificialFastqGenerator and illustrate its implementation in evaluating a typical bespoke NGS analysis pipeline under different experimental conditions. ArtificialFastqGenerator was released in January 2012. Source code, example files and binaries are freely available under the terms of the GNU General Public License v3.0. from https://sourceforge.net/projects/artfastqgen/.
  More...