BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  US Device
Europe
Asia

DIVERSITY

PROFILES
Company Profiles

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Research Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Infectious Diseases - Microbiology - Virology

Host Modulators of H1N1 Cytopathogenicity
Published: Thursday, August 02, 2012
Author: Samuel E. Ward et al.

by Samuel E. Ward, Hyun Seok Kim, Kakajan Komurov, Saurabh Mendiratta, Pei-Ling Tsai, Mirco Schmolke, Neal Satterly, Balaji Manicassamy, Christian V. Forst, Michael G. Roth, Adolfo García-Sastre, Katarzyna M. Blazewska, Charles E. McKenna, Beatriz M. Fontoura, Michael A. White

Influenza A virus infects 5–20% of the population annually, resulting in ~35,000 deaths and significant morbidity. Current treatments include vaccines and drugs that target viral proteins. However, both of these approaches have limitations, as vaccines require yearly development and the rapid evolution of viral proteins gives rise to drug resistance. In consequence additional intervention strategies, that target host factors required for the viral life cycle, are under investigation. Here we employed arrayed whole-genome siRNA screening strategies to identify cell-autonomous molecular components that are subverted to support H1N1 influenza A virus infection of human bronchial epithelial cells. Integration across relevant public data sets exposed druggable gene products required for epithelial cell infection or required for viral proteins to deflect host cell suicide checkpoint activation. Pharmacological inhibition of representative targets, RGGT and CHEK1, resulted in significant protection against infection of human epithelial cells by the A/WS/33 virus. In addition, chemical inhibition of RGGT partially protected against H5N1 and the 2009 H1N1 pandemic strain. The observations reported here thus contribute to an expanding body of studies directed at decoding vulnerabilities in the command and control networks specified by influenza virulence factors.
  More...

 

//-->