BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  C2C Services & Suppliers™
Europe
Asia

DIVERSITY

PROFILES
Company Profiles

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Research Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Biochemistry - Mathematics - Oncology

Detection of Simultaneous Group Effects in MicroRNA Expression and Related Target Gene Sets
Published: Tuesday, June 19, 2012
Author: Stephan Artmann et al.

by Stephan Artmann, Klaus Jung, Annalen Bleckmann, Tim Beißbarth

Expression levels of mRNAs are among other factors regulated by microRNAs. A particular microRNA can bind specifically to several target mRNAs and lead to their degradation. Expression levels of both, mRNAs and microRNAs, can be obtained by microarray experiments. In order to increase the power of detecting microRNAs that are differentially expressed between two different groups of samples, we incorporate expression levels of their related target gene sets. Group effects are determined individually for each microRNA, and by enrichment tests and global tests for target gene sets. The resulting lists of p-values from individual and set-wise testing are combined by means of meta analysis. We propose a new approach to connect microRNA-wise and gene set-wise information by means of p-value combination as often used in meta-analysis. In this context, we evaluate the usefulness of different approaches of gene set tests. In a simulation study we reveal that our combination approach is more powerful than microRNA-wise testing alone. Furthermore, we show that combining microRNA-wise results with ‘competitive’ gene set tests maintains a pre-specified false discovery rate. In contrast, a combination with ‘self-contained’ gene set tests can harm the false discovery rate, particularly when gene sets are not disjunct.
  More...