BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  C2C Services & Suppliers™
Europe
Asia

DIVERSITY

PROFILES
Company Profiles

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Research Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

 News | News By Subject | News by Disease News By Date | Search News
Get Our Industry eNewsletter FREE email:    
   

Syracuse University Announces New Drug Delivery System to Improve Cancer Treatment


3/16/2011 6:24:03 AM

SYRACUSE, N.Y., March 16, 2011 /PRNewswire/ -- Scientists in Syracuse University's Chemistry Department have created a new drug delivery system expected to advance the effectiveness of cancer-killing drugs. It uses gold nanoparticles with attached DNA that binds to a proven anti-cancer drug, Doxorubicin or DOX.

Preliminary tests indicate this delivery device has the potential to significantly improve the results of cancer chemotherapy. DOX is currently used against cancers of the breast, bone marrow, thyroid, bladder, ovary, small cell lung and several others.

"The possibilities of this new system are really exciting," says SU Professor James C. Dabrowiak. "For example, it would be easy to add to the device molecules that have the ability to target cancer cells. Another possibility is using light excitation to release high concentrations of an anti-tumor drug directly within the tumor."

These and other upgrades could enable clinics to focus chemotherapy more tightly on cancer cells and reduce negative side effects on healthy cells in other parts of the body.

A key element of the new system is that the DNA attached to the gold particles is engineered specifically to bind to the DOX anti-tumor drug. Studies show that the DOX can be transferred by diffusion to a receptor DNA molecule.

The gold nanoparticles have an average diameter of only 15.5 nanometers or a few billionths of a meter. A single nanoparticle presents more than 100 DOX sites and that, when multiplied by millions of the particles, could create a massive and deadly assault on a tumor.

"We believe this work can bring significant gains in the effectiveness of chemotherapy treatments," says Mathew M. Maye, SU Assistant Professor of Chemistry and co-inventor of the delivery system. "We still have work to do but this advance opens a promising new field of investigation that can lead to important new clinical tools."

A key advantage of the new system is that the DOX anti-tumor drug is already accepted by the FDA. Other such drugs may be deployed using this system simply by engineering the DNA to bind to a different drug molecule.

The Syracuse laboratory is continuing investigations to check the toxicity of the system. They will also explore "smart" particles capable of attaching to cancer cells and responding to triggers that will activate drug release. Prior discoveries demonstrate that such nano-delivery systems may be within reach and could help deliver large payloads of anti-tumor drugs where needed.

Graphic: Attacking Cancer with Tiny Drug Carriers

http://www.ereleases.com/pic/Syracuse-gold-nano.jpg

The work of the Syracuse University team was published in a February 2011 issue of ChemComm, a publication of the Royal Society of Chemistry. For more information and access to explanatory graphics, call (315) 443-4601 / 443-2146 or e-mail jcdabrow@syr.edu / mmmaye@syr.edu

For information, contact:


Prof. James C. Dabrowiak

(315) 443-4601

jcdabrow@syr.edu


-or-


Prof. Mathew M. Maye

(315) 443-2146

mmmaye@syr.edu



This press release was issued through eReleases(R). For more information, visit eReleases Press Release Distribution at http://www.ereleases.com.

SOURCE Syracuse University Office of Technology Transfer and Industrial Development


Read at BioSpace.com


   

ADD TO DEL.ICIO.US    ADD TO DIGG    ADD TO FURL    ADD TO STUMBLEUPON    ADD TO TECHNORATI FAVORITES
 

//-->