BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  C2C Services & Suppliers™
Europe
Asia

DIVERSITY

PROFILES
Company Profiles

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Research Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

 News | News By Subject | News by Disease News By Date | Search News
Get Our Industry eNewsletter FREE email:    
   

New Modeling of Brain's Circuitry May Bring Better Understanding of Parkinson's Disease, Indiana University-Purdue University Indianapolis (IUPUI) Study


9/27/2011 11:09:25 AM

INDIANAPOLIS – Researchers from the School of Science at Indiana University-Purdue University Indianapolis have developed a mathematical model of the brain’s neural circuitry that may provide a better understanding of how and why information is not transmitted correctly in the brains of Parkinson’s disease patients. This knowledge may eventually help scientists and clinicians correct these misfires.

Work led by Leonid L. Rubchinsky, Ph.D., associate professor of mathematical sciences in the School of Science at IUPUI, examines the exchange of electric signals within the Parkinson affected brain, demonstrating that repetitious, overlapped firing of neurons can lead to waves of overly synchronized brain activity. A report on the model appears in the September 2011 issue of the journal Chaos: An Interdisciplinary Journal of Nonlinear Science, a publication of the American Institute of Physics.

“This mathematical model of the brain’s circuitry provides insight that we could not obtain from animal or human brains in experimental or clinical studies. With this new modeling we, and others, can now better study the mechanisms of information transmission in the Parkinsonian brain – both how the mechanisms work and how they fail. We can also learn about the properties of the cells that are responsible. All this knowledge is critical to the eventual development of therapies to correct defective transmissions found in the brains of those with Parkinson’s disease,” said Rubchinsky, who is affiliated with the Center for Mathematical Modeling and Computational Sciences in the School of Science at IUPUI.

Parkinson's disease is a progressive disorder causing degeneration of neurons in the substantia nigra, a region of the brain that produces the chemical dopamine. Symptoms of Parkinson’s disease include tremor, rigidity or stiffness, slowness of movement and impaired balance and coordination. Approximately 60,000 new cases are diagnosed annually in the United States according to the National Institutes of Health. Currently there is no cure for Parkinson’s disease.

“Technically we have the tools needed for deep brain stimulation – stimulators, long lasting batteries and implantable chips – but we don’t have the algorithms – the formulas and other mathematical tools necessary to know what we are trying to stimulate and how. Our model, and others that will follow, should make deep brain stimulation a feasible therapy for Parkinson’s disease within the next decade,” said Rubchinsky, who is also a researcher with the Stark Neurosciences Research Institute at the IU School of Medicine.

In addition to his research, Rubchinsky, a computational neuroscientist, teaches courses in calculus for the life sciences to undergraduate students and several biomathematics courses to graduate students in the School of Science.

The study, “Intermittent Synchronization in a Network of Bursting Neurons,” was co-authored by former IUPUI postdoctoral fellow Choongseok Park, Ph.D. The work was funded by the National Institute of Neurological Disorders and Stroke of the National Institutes of Health.

The School of Science at IUPUI is committed to excellence in teaching, research and service in the biological, physical, behavioral and mathematical sciences. The School is dedicated to being a leading resource for interdisciplinary research and science education in support of Indiana's effort to expand and diversify its economy. For more information visit www.science.iupui.edu


Read at BioSpace.com

   

ADD TO DEL.ICIO.US    ADD TO DIGG    ADD TO FURL    ADD TO STUMBLEUPON    ADD TO TECHNORATI FAVORITES
 

//-->