BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  C2C Services & Suppliers™
Europe
Asia

DIVERSITY

PROFILES
Company Profiles

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Research Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

 News | News By Subject | News by Disease News By Date | Search News
Get Our Industry eNewsletter FREE email:    
   

Discovery of "Probiotic Transporters" Unlocks Secrets of Infection-Preventive Bifidobacteria, University of Tokyo and Yokohama City University Study


1/26/2011 11:51:36 AM

January 26, 2011 -- Researchers at RIKEN, Yokohama City University and the University of Tokyo have uncovered how gut bifidobacteria protect the body against lethal infection by enhancing the defenses of colonic epithelium. Published in this week’s issue of Nature, the finding provides first-ever clues on the mechanisms underlying the beneficial effects of gut microbiota, promising more effective probiotic therapies for a variety of disorders and diseases.

In recent years, new metagenomics techniques have enabled scientists to delve ever-deeper into the world of gut microbiota, revealing the strong influence that intestinal bacteria exert on our health. Bifidobacteria, one of the most numerous such bacteria, confer to their hosts a range of beneficial health effects, aiding in digestion, boosting the immune system and even reducing cancer risk. The mechanism underlying these effects, however, has remained a mystery.

With their study, the research team set out to unravel this mystery using a combination of techniques from genetics, transcriptomics and metabolomics. Initial experiments on so-called germ-free (GF) mice, whose guts are uncolonized by bacteria, revealed stark differences between bifidobacteria strains. The researchers found that mice colonized by one bifidobacterium subspecies, B. longum, were able to survive when fed the pathogenic bacteria E. coli O157, while GF mice without the bacteria died of infection within 7 days. Another strain named B. adolescentis, in contrast, had no such effect.

By analyzing fecal metabolic profiles, the researchers succeeded in pinpointing the source of this difference in the production of acetate, which they showed enhances intestinal epithelial defense and protects against infection from O157. The key actor in this mechanism is a carbohydrate transporter encoded by genes present in certain strains of bifidobacteria such as B. longum, which enables these bacteria to utilize fructose to produce acetate in the distal colon.

As a demonstration of the power of multi “omics” technologies, the identification of these “probiotic transporters” constitutes a milestone in the study of gut microbiota. The finding also demonstrates the power of multi “omics” technologies for analyzing the gut ecosystem, promising advancements in the development of cutting-edge probiotic therapies.

For more information, please contact:

Dr. Ohno Hiroshi Laboratory for Epithelial Immunobiology RIKEN Research Center for Allergy and Immunology Tel: +81-(0)45-503-7031 / Fax: +81-(0)45-503-7068

Ms. Tomoko Ikawa (PI officer) Global Relations Office RIKEN Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-463-3687 Email: koho@riken.jp

Reference: Shinji Fukuda, Hidehiro Toh, Koji Hase, Kenshiro Oshima, Yumiko Nakanishi, Kazutoshi Yoshimura, Toru Tobe, Julie M. Clarke, David L. Topping, Tohru Suzuki, Todd D. Taylor, Kikuji Itoh, Jun Kikuchi, Hidetoshi Morita, Masahira Hattori and Hiroshi Ohno. Bifidobacteria protect host from enteropathogenic infection through production of acetate. Nature (2010). DOI: 10.1038/nature09646


Read at BioSpace.com

   

ADD TO DEL.ICIO.US    ADD TO DIGG    ADD TO FURL    ADD TO STUMBLEUPON    ADD TO TECHNORATI FAVORITES
 

//-->