BioSpace Collaborative

Academic/Biomedical Research
News & Jobs
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  C2C Services & Suppliers™
Europe
Asia

DIVERSITY

PROFILES
Company Profiles

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Research Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

 News | News By Subject | News by Disease News By Date | Search News
Get Our Industry eNewsletter FREE email:    
   

Cincinnati Children's Hospital Medical Center Study Finds Lymphoid Leukemia's Weak Spot


2/12/2013 8:49:03 AM

CINCINNATI, Feb. 11, 2013 /PRNewswire-USNewswire/ -- Discovering what they call the "Achilles' heel" for lymphoid leukemia, an international research team has tested a possible alternative treatment that eradicated the disease in mouse models.

(Logo: http://photos.prnewswire.com/prnh/20110406/MM79025LOGO)

Reporting their results Feb. 11 in the journal Cancer Cell, the scientists said the targeted molecular therapy described in their study could have direct implications for current treatment of acute lymphoid leukemia (ALL) in people.

Led by researchers at Cincinnati Children's Hospital Medical Center and the Institut de recherches cliniques de Montreal (ICRM), the study found that leukemic cells depend on a protein called Gfi1 for survival. Removing the protein in mouse models of the disease weakened and killed the leukemia cells. Researchers said this should make the leukemia more susceptible to chemo and radiation therapies the current frontline treatments for ALL.

"Chemo and radiation therapies are very non-specific and can be toxic to patients. Our findings suggest that combining the inhibition of Gfi1 with these treatments may allow the use of lower cytotoxic doses and directly benefit patients," said H. Leighton Grimes, PhD, co-senior investigator on the study and researcher in the divisions of Cellular and Molecular Immunology and Experimental Hematology at Cincinnati Children's.

Also collaborating was co-senior investigator, Tarik Moroy, PhD, president and scientific director of the ICRM in Montreal.

The researchers said the need for better treatment options is evident. Beside the potential toxicity of current therapeutic options, many ALL patients relapse after initial remission of their disease.

A cancer that affects blood cells and the immune system, ALL is the most common type of leukemia in children from infancy up to age 19, according to the Leukemia and Lymphoma Society of America. ALL occurs most often in the first decade of life but increases in frequency again in older individuals. According to the National Cancer Institute, the overall survival rate for all ages of people with ALL is 66.4 percent and 90.8 percent for children under the age of 5 years.

During the onset of a disease like ALL, cancer signals among cells activate a protein called p53, which is often referred to as the "guardian of the genome." A repressor of tumor growth, p53 normally initiates a DNA repair program that is supposed to induce programmed cell death to stop or slow down tumor progression.

In the case of ALL, the researchers said the disease relies on the Gfi1 protein to get around p53's tumor repressing capabilities by essentially overriding p53. Gfi1 has an important role in the normal development of lymphoid cells. But analyses of ALL mouse models and primary human tumors showed that Gfi1 is overexpressed in the disease state.

When the researchers removed Gfi1 in established mouse lymphoid tumors, the leukemia regressed through p53-induced cell death. Next, to see if removal of Gfi1 would be effective in modeled human ALL, the research team inserted T-cell leukemia cells from human patients into mice. Inhibiting Gfi1 in this instance stopped the progression of human leukemia in the animals without any harmful effects.

The scientists are continuing their research to see if results of the current study will be translatable to human patients.

Other collaborators on the study included co-first authors, James Phelan, PhD, a former graduate student in Grimes' laboratory (now a postdoctoral fellow at the National Cancer Institute of the National Institutes of Health), and Cyrus Khandanpour, MD, a former post-doctoral fellow in Dr. Moroy's laboratory (presently a physician scientist at University Hospital of the University of Duisburg-Essen in Germany).

Funding for the research came in part from the National Institutes of Health (grant numbers CA105152, CA159845, P30 DK090971), the Canadian Institutes of Health Research (MOP-84238, MOP-111011) the Canada Research Chair program, Leukemia and Lymphoma Society of America, CancerFree Kids, Alex's Lemonade Stand, the German Cancer Fund, the Cole Foundation, a University of Cincinnati Cancer Therapeutics T32 training grant (T32-CA117846) and a Pelotonia Fellowship.

About Cincinnati Children's:

Cincinnati Children's Hospital Medical Center ranks third in the nation among all Honor Roll hospitals in U.S. News and World Report's 2012 Best Children's Hospitals ranking. It is ranked #1 for neonatology and in the top 10 for all pediatric specialties. Cincinnati Children's is one of the top two recipients of pediatric research grants from the National Institutes of Health and a research affiliate of the University of Cincinnati College of Medicine. It is internationally recognized for improving child health and transforming delivery of care through fully integrated, globally recognized research, education and innovation. Additional information can be found at www.cincinnatichildrens.org.

SOURCE Cincinnati Children's Hospital Medical Center


Read at BioSpace.com


   

ADD TO DEL.ICIO.US    ADD TO DIGG    ADD TO FURL    ADD TO STUMBLEUPON    ADD TO TECHNORATI FAVORITES
 

//-->