BioSpace.com

Biotech and Pharmaceutical
News & Jobs
Search the Site
 
   
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Browse Biotech Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  US Device
Europe
Asia

DIVERSITY

INVESTOR
Market Summary
News
IPOs

PROFILES
Company Profiles

START UPS
Companies
Events

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Biotech Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Dermatology - Immunology - Microbiology - Physiology

Eosinophils Increase Neuron Branching in Human and Murine Skin and In Vitro
Published: Thursday, July 21, 2011
Author: Erin L. Foster et al.

by Erin L. Foster, Eric L. Simpson, Lorna J. Fredrikson, James J. Lee, Nancy A. Lee, Allison D. Fryer, David B. Jacoby

Cutaneous nerves are increased in atopic dermatitis, and itch is a prominent symptom. We studied the functional interactions between eosinophils and nerves in human and mouse skin and in culture. We demonstrated that human atopic dermatitis skin has eosinophil granule proteins present in the same region as increased nerves. Transgenic mice in which interleukin-5 (IL-5) expression is driven by a keratin-14 (K14) promoter had many eosinophils in the epidermis, and the number of nerves was also significantly increased in the epidermis. In co-cultures, eosinophils dramatically increased branching of sensory neurons isolated from the dorsal root ganglia (DRG) of mice. This effect did not occur in DRG neurons co-cultured with mast cells or with dead eosinophils. Physical contact of the eosinophils with the neurons was not required, and the effect was not blocked by an antibody to nerve growth factor. DRG neurons express eotaxin-1, ICAM-1 and VCAM-1, which may be important in the recruitment, binding, and activation of eosinophils in the region of cutaneous nerves. These data indicate a pathophysiological role for eosinophils in cutaneous nerve growth in atopic dermatitis, and suggest they may present a therapeutic target in atopic dermatitis and other eosinophilic skin conditions with neuronal symptoms such as itch.
  More...

 

//-->