BioSpace.com

Biotech and Pharmaceutical
News & Jobs
Search the Site
 
   
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Browse Biotech Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  US Device
Europe
Asia

DIVERSITY

INVESTOR
Market Summary
News
IPOs

PROFILES
Company Profiles

START UPS
Companies
Events

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Biotech Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Non-Clinical Medicine - Obstetrics - Pediatrics and Child Health - Public Health and Epidemiology

Maternal Obesity Enhances Collagen Accumulation and Cross-Linking in Skeletal Muscle of Ovine Offspring
Published: Tuesday, February 14, 2012
Author: Yan Huang et al.

by Yan Huang, Jun-Xing Zhao, Xu Yan, Mei-Jun Zhu, Nathan M. Long, Richard J. McCormick, Stephen P. Ford, Peter W. Nathanielsz, Min Du

Maternal obesity (MO) has harmful effects on both fetal development and subsequent offspring health. We previously demonstrated that MO enhances collagen accumulation in fetal skeletal muscle, but its impact on mature offspring muscle collagen accumulation is unknown. Ewes were fed either a control diet (Con, fed 100% of NRC nutrient recommendations) or obesogenic diet (OB, fed 150% of NRC nutrient recommendations) from 60 days before conception to birth. All ewes received the Con diet during lactation. Male offspring were euthanized at 2.5 years (mean) and the left Longissimus dorsi (LD) muscle and semitendinosus (ST) muscle were sampled. Collagen concentration increased by 37.8±19.0% (P<0.05) in LD and 31.2±16.0% (P<0.05) in ST muscle of OB compared to Con offspring muscle. Mature collagen cross-linking (pyridinoline concentration) was increased for 22.3±7.4% and 36.3±9.9% (P<0.05) in LD and ST muscle of OB group respectively. Expression of lysyl oxidase, lysyl hydroxylase-2b (LH2b) and prolyl 4-hydroxylase (P4HA) was higher in OB LD and ST muscle. In addition, the expression of metalloproteinases (MMPs) was lower but tissue inhibitor of metalloproteinases (TIMPs) was higher in OB offspring muscle, indicating reduced collagen remodeling. MO enhanced collagen content and cross-linking in offspring muscle, which might be partially due to reduced collagen remodeling. Our observation that the collagen content and cross-linking are enhanced in MO offspring muscle is significant, because fibrosis is known to impair muscle functions and is a hallmark of muscle aging.
  More...

 

//-->