BioSpace.com

Biotech and Pharmaceutical
News & Jobs
Search the Site
 
   
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Browse Biotech Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  US Device
Europe
Asia

DIVERSITY

INVESTOR
Market Summary
News
IPOs

PROFILES
Company Profiles

START UPS
Companies
Events

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Biotech Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Mental Health - Neuroscience - Pharmacology

Activation of PKCzeta and PKMzeta in the Nucleus Accumbens Core Is Necessary for the Retrieval, Consolidation and Reconsolidation of Drug Memory
Published: Friday, February 10, 2012
Author: Jose A. Crespo et al.

by Jose A. Crespo, Petra Stöckl, Florian Ueberall, Marcel Jenny, Alois Saria, Gerald Zernig

One of the greatest challenges in the treatment of substance dependence is to reverse the control that drug-associated stimuli have gained over the addict's behavior, as these drug-associated memories increase the risk of relapse even after long periods of abstinence. We report here that inhibition of the atypical protein kinase C isoform PKCzeta and its constitutively active isoform PKMzeta with the pseudosubstrate inhibitor ZIP administered locally into the nucleus accumbens core reversibly inhibited the retrieval of drug-associated memory and drug (remifentanil) seeking, whereas a scrambled ZIP peptide or staurosporine, an effective inhibitor of c/nPKC-, CaMKII-, and PKA kinases that does not affect PKCzeta/PKMzeta activity, was without effect on these memory processes. Acquisition or extinction of drug-associated memory remained unaffected by PKCzeta- and PKMzeta inhibition.
  More...

 

//-->