PLoS By Category | Recent PLoS Articles

Anesthesiology and Pain Management - Biochemistry - Biophysics - Biotechnology - Cardiovascular Disorders - Chemical Biology - Chemistry - Computer Science - Critical Care and Emergency Medicine - Dermatology - Diabetes and Endocrinology - Ecology - Evidence-Based Healthcare - Gastroenterology and Hepatology - Geriatrics - Hematology - Immunology - Infectious Diseases - Mathematics - Mental Health - Microbiology - Molecular Biology - Nephrology - Neurological Disorders - Neuroscience - Non-Clinical Medicine - Nutrition - Obstetrics - Oncology - Ophthalmology - Otolaryngology - Pathology - Pediatrics and Child Health - Pharmacology - Physics - Physiology - Public Health and Epidemiology - Radiology and Medical Imaging - Respiratory Medicine - Rheumatology - Science Policy - Surgery - Urology - Virology - Women's Health


An Ensemble Classifier for Eukaryotic Protein Subcellular Location Prediction Using Gene Ontology Categories and Amino Acid Hydrophobicity
Published: Monday, January 30, 2012
Author: Liqi Li et al.

by Liqi Li, Yuan Zhang, Lingyun Zou, Changqing Li, Bo Yu, Xiaoqi Zheng, Yue Zhou

With the rapid increase of protein sequences in the post-genomic age, it is challenging to develop accurate and automated methods for reliably and quickly predicting their subcellular localizations. Till now, many efforts have been tried, but most of which used only a single algorithm. In this paper, we proposed an ensemble classifier of KNN (k-nearest neighbor) and SVM (support vector machine) algorithms to predict the subcellular localization of eukaryotic proteins based on a voting system. The overall prediction accuracies by the one-versus-one strategy are 78.17%, 89.94% and 75.55% for three benchmark datasets of eukaryotic proteins. The improved prediction accuracies reveal that GO annotations and hydrophobicity of amino acids help to predict subcellular locations of eukaryotic proteins.
  More...

 
//-->