BioSpace.com

Biotech and Pharmaceutical
News & Jobs
Search the Site
 
   
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Browse Biotech Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  US Device
Europe
Asia

DIVERSITY

INVESTOR
Market Summary
News
IPOs

PROFILES
Company Profiles

START UPS
Companies
Events

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Biotech Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Biophysics - Molecular Biology - Physics

Quantitative Analysis of miRNA Expression in Seven Human Foetal and Adult Organs
Published: Wednesday, December 14, 2011
Author: Yanping Tang et al.

by Yanping Tang, Dong Liu, Lijie Zhang, Sigurdur Ingvarsson, Huiping Chen

miRNAs have been found to repress gene expression at posttranscriptional level in cells. Studies have shown that expression of miRNAs is tissue-specific and developmental-stage-specific. The mechanism behind this could be explained by miRNA pathways. In this study, totally 54 miRNAs were analysed in 7 matched human foetal and adult organs (brain, colon, heart, kidney, liver, lung and spleen) using real-time PCR. Quantitative analysis showed that a big proportion of the 54 miRNAs have higher general expression in the organs of the foetal period than the adult period, with the exception of the heart. The miRNA gene promoter methylation level in the adult stages was higher than in the foetal stages. Moreover, there is a high general expression level of several miRNAs in both stages of brain, kidney, liver, lung and spleen, but not seen in colon and heart. Our results indicate that the miRNAs may play a bigger role in the foetal stage than the adult stage of brain, colon, kidney, liver, lung and spleen. The majority of the miRNAs analysed may play an important role in the growth and development of brain, kidney, liver, lung and spleen. However, a minority of the miRNAs may be functional in colon and heart.
  More...

 

//-->