BioSpace.com

Biotech and Pharmaceutical
News & Jobs
Search the Site
 
   
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Browse Biotech Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  US Device
Europe
Asia

DIVERSITY

INVESTOR
Market Summary
News
IPOs

PROFILES
Company Profiles

START UPS
Companies
Events

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Biotech Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Molecular Biology - Oncology - Pharmacology - Urology

The Antidiabetic Drug Ciglitazone Induces High Grade Bladder Cancer Cells Apoptosis through the Up-Regulation of TRAIL
Published: Monday, December 12, 2011
Author: Marie-Laure Plissonnier et al.

by Marie-Laure Plissonnier, Sylvie Fauconnet, Hugues Bittard, Isabelle Lascombe

Background

Ciglitazone belongs to the thiazolidinediones class of antidiabetic drug family and is a high-affinity ligand for the Peroxisome Proliferator-Activated Receptor ? (PPAR?). Apart from its antidiabetic activity, this molecule shows antineoplastic effectiveness in numerous cancer cell lines.

Methodology/Principal Findings

Using RT4 (derived from a well differentiated grade I papillary tumor) and T24 (derived from an undifferentiated grade III carcinoma) bladder cancer cells, we investigated the potential of ciglitazone to induce apoptotic cell death and characterized the molecular mechanisms involved. In RT4 cells, the drug induced G2/M cell cycle arrest characterized by an overexpression of p53, p21waf1/CIP1 and p27Kip1 in concomitance with a decrease of cyclin B1. On the contrary, in T24 cells, it triggered apoptosis via extrinsic and intrinsic pathways. Cell cycle arrest and induction of apoptosis occurred at high concentrations through PPAR? activation-independent pathways. We show that in vivo treatment of nude mice by ciglitazone inhibits high grade bladder cancer xenograft development. We identified a novel mechanism by which ciglitazone kills cancer cells. Ciglitazone up-regulated soluble and membrane-bound TRAIL and let TRAIL-resistant T24 cells to respond to TRAIL through caspase activation, death receptor signalling pathway and Bid cleavage. We provided evidence that TRAIL-induced apoptosis is partially driven by ciglitazone-mediated down-regulation of c-FLIP and survivin protein levels through a proteasome-dependent degradation mechanism.

Conclusions/Significance

Therefore, ciglitazone could be clinically relevant as chemopreventive or therapeutic agent for the treatment of TRAIL-refractory high grade urothelial cancers.

  More...

 

//-->