PLoS By Category | Recent PLoS Articles

Biochemistry - Molecular Biology - Neuroscience - Physiology - Rheumatology

Switch of Voltage-Gated K+ Channel Expression in the Plasma Membrane of Chondrogenic Cells Affects Cytosolic Ca2+-Oscillations and Cartilage Formation
Published: Monday, November 21, 2011
Author: Zoltan Varga et al.

by Zoltan Varga, Tamás Juhász, Csaba Matta, János Fodor, Éva Katona, Adam Bartok, Tamás Oláh, Attila Sebe, László Csernoch, Gyorgy Panyi, Róza Zákány


Understanding the key elements of signaling of chondroprogenitor cells at the earliest steps of differentiation may substantially improve our opportunities for the application of mesenchymal stem cells in cartilage tissue engineering, which is a promising approach of regenerative therapy of joint diseases. Ion channels, membrane potential and Ca2+-signaling are important regulators of cell proliferation and differentiation. Our aim was to identify such plasma membrane ion channels involved in signaling during chondrogenesis, which may serve as specific molecular targets for influencing chondrogenic differentiation and ultimately cartilage formation.

Methodology/Principal Findings

Using patch-clamp, RT-PCR and Western-blot experiments, we found that chondrogenic cells in primary micromass cell cultures obtained from embryonic chicken limb buds expressed voltage-gated NaV1.4, KV1.1, KV1.3 and KV4.1 channels, although KV1.3 was not detectable in the plasma membrane. Tetrodotoxin (TTX), the inhibitor of NaV1.4 channels, had no effect on cartilage formation. In contrast, presence of 20 mM of the K+ channel blocker tetraethyl-ammonium (TEA) during the time-window of the final commitment of chondrogenic cells reduced KV currents (to 27±3% of control), cell proliferation (thymidine incorporation: to 39±4.4% of control), expression of cartilage-specific genes and consequently, cartilage formation (metachromasia: to 18.0±6.4% of control) and also depolarized the membrane potential (by 9.3±2.1 mV). High-frequency Ca2+-oscillations were also suppressed by 10 mM TEA (confocal microscopy: frequency to 8.5±2.6% of the control). Peak expression of TEA-sensitive KV1.1 in the plasma membrane overlapped with this period. Application of TEA to differentiated chondrocytes, mainly expressing the TEA-insensitive KV4.1 did not affect cartilage formation.


These data demonstrate that the differentiation and proliferation of chondrogenic cells depend on rapid Ca2+-oscillations, which are modulated by KV-driven membrane potential changes. KV1.1 function seems especially critical during the final commitment period. We show the critical role of voltage-gated cation channels in the differentiation of non-excitable cells with potential therapeutic use.