BioSpace.com

Biotech and Pharmaceutical
News & Jobs
Search the Site
 
   
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Browse Biotech Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  US Device
Europe
Asia

DIVERSITY

INVESTOR
Market Summary
News
IPOs

PROFILES
Company Profiles

START UPS
Companies
Events

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Biotech Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Dermatology - Diabetes and Endocrinology - Physiology - Surgery

Antimycotic Ciclopirox Olamine in the Diabetic Environment Promotes Angiogenesis and Enhances Wound Healing
Published: Friday, November 18, 2011
Author: Sae Hee Ko et al.

by Sae Hee Ko, Allison Nauta, Shane D. Morrison, Hongyan Zhou, Andrew Zimmermann, Geoffrey C. Gurtner, Sheng Ding, Michael T. Longaker

Diabetic wounds remain a major medical challenge with often disappointing outcomes despite the best available care. An impaired response to tissue hypoxia and insufficient angiogenesis are major factors responsible for poor healing in diabetic wounds. Here we show that the antimycotic drug ciclopirox olamine (CPX) can induce therapeutic angiogenesis in diabetic wounds. Treatment with CPX in vitro led to upregulation of multiple angiogenic genes and increased availability of HIF-1a. Using an excisional wound splinting model in diabetic mice, we showed that serial topical treatment with CPX enhanced wound healing compared to vehicle control treatment, with significantly accelerated wound closure, increased angiogenesis, and increased dermal cellularity. These findings offer a promising new topical pharmacologic therapy for the treatment of diabetic wounds.
  More...

 

//-->