BioSpace.com

Biotech and Pharmaceutical
News & Jobs
Search the Site
 
   
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Browse Biotech Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  US Device
Europe
Asia

DIVERSITY

INVESTOR
Market Summary
News
IPOs

PROFILES
Company Profiles

START UPS
Companies
Events

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Biotech Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Anesthesiology and Pain Management - Diabetes and Endocrinology - Immunology - Neurological Disorders - Neuroscience

Transplantation of Bone Marrow-Derived Mononuclear Cells Improves Mechanical Hyperalgesia, Cold Allodynia and Nerve Function in Diabetic Neuropathy
Published: Friday, November 18, 2011
Author: Keiko Naruse et al.

by Keiko Naruse, Jun Sato, Megumi Funakubo, Masaki Hata, Nobuhisa Nakamura, Yasuko Kobayashi, Hideki Kamiya, Taiga Shibata, Masaki Kondo, Tatsuhito Himeno, Tatsuaki Matsubara, Yutaka Oiso, Jiro Nakamura

Relief from painful diabetic neuropathy is an important clinical issue. We have previously shown that the transplantation of cultured endothelial progenitor cells or mesenchymal stem cells ameliorated diabetic neuropathy in rats. In this study, we investigated whether transplantation of freshly isolated bone marrow-derived mononuclear cells (BM-MNCs) alleviates neuropathic pain in the early stage of streptozotocin-induced diabetic rats. Two weeks after STZ injection, BM-MNCs or vehicle saline were injected into the unilateral hind limb muscles. Mechanical hyperalgesia and cold allodynia in SD rats were measured as the number of foot withdrawals to von Frey hair stimulation and acetone application, respectively. Two weeks after the BM-MNC transplantation, sciatic motor nerve conduction velocity (MNCV), sensory nerve conduction velocity (SNCV), sciatic nerve blood flow (SNBF), mRNA expressions and histology were assessed. The BM-MNC transplantation significantly ameliorated mechanical hyperalgesia and cold allodynia in the BM-MNC-injected side. Furthermore, the slowed MNCV/SNCV and decreased SNBF in diabetic rats were improved in the BM-MNC-injected side. BM-MNC transplantation improved the decreased mRNA expression of NT-3 and number of microvessels in the hind limb muscles. There was no distinct effect of BM-MNC transplantation on the intraepidermal nerve fiber density. These results suggest that autologous transplantation of BM-MNCs could be a novel strategy for the treatment of painful diabetic neuropathy.
  More...

 

//-->