BioSpace.com

Biotech and Pharmaceutical
News & Jobs
Search the Site
 
   
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Browse Biotech Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  US Device
Europe
Asia

DIVERSITY

INVESTOR
Market Summary
News
IPOs

PROFILES
Company Profiles

START UPS
Companies
Events

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Biotech Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Hematology - Infectious Diseases

Genetically-Determined Hyperfunction of the S100B/RAGE Axis Is a Risk Factor for Aspergillosis in Stem Cell Transplant Recipients
Published: Thursday, November 17, 2011
Author: Cristina Cunha et al.

by Cristina Cunha, Gloria Giovannini, Antonio Pierini, Alain S. Bell, Guglielmo Sorci, Francesca Riuzzi, Rosario Donato, Fernando Rodrigues, Andrea Velardi, Franco Aversa, Luigina Romani, Agostinho Carvalho

Invasive aspergillosis (IA) is a major threat to the successful outcome of hematopoietic stem cell transplantation (HSCT), although individual risk varies considerably. Recent evidence has established a pivotal role for a danger sensing mechanism implicating the S100B/receptor for advanced glycation end products (RAGE) axis in antifungal immunity. The association of selected genetic variants in the S100B/RAGE axis with susceptibility to IA was investigated in 223 consecutive patients undergoing HSCT. Furthermore, studies addressing the functional consequences of these variants were performed. Susceptibility to IA was significantly associated with two distinct polymorphisms in RAGE (-374T/A) and S100B (+427C/T) genes, the relative contribution of each depended on their presence in both transplantation counterparts [patient SNPRAGE, adjusted hazard ratio (HR), 1.97; P?=?0.042 and donor SNPRAGE, HR, 2.03; P?=?0.047] or in donors (SNPS100B, HR, 3.15; P?=?7.8e-4) only, respectively. Functional assays demonstrated a gain-of-function phenotype of both variants, as shown by the enhanced expression of inflammatory cytokines in RAGE polymorphic cells and increased S100B secretion in vitro and in vivo in the presence of the S100B polymorphism. These findings point to a relevant role of the danger sensing signaling in human antifungal immunity and highlight a possible contribution of a genetically-determined hyperfunction of the S100B/RAGE axis to susceptibility to IA in the HSCT setting.
  More...

 

//-->