BioSpace.com

Biotech and Pharmaceutical
News & Jobs
Search the Site
 
   
Biotechnology and Pharmaceutical Channel Medical Device and Diagnostics Channel Clinical Research Channel BioSpace Collaborative    Job Seekers:  Register | Login          Employers:  Register | Login  

NEWSLETTERS
Free Newsletters
Archive
My Subscriptions

NEWS
News by Subject
News by Disease
News by Date
PLoS
Search News
Post Your News
JoVE

CAREER NETWORK
Job Seeker Login
Most Recent Jobs
Browse Biotech Jobs
Search Jobs
Post Resume
Career Fairs
Career Resources
For Employers

HOTBEDS
Regional News
US & Canada
  Biotech Bay
  Biotech Beach
  Genetown
  Pharm Country
  BioCapital
  BioMidwest
  Bio NC
  BioForest
  Southern Pharm
  BioCanada East
  US Device
Europe
Asia

DIVERSITY

INVESTOR
Market Summary
News
IPOs

PROFILES
Company Profiles

START UPS
Companies
Events

INTELLIGENCE
Research Store

INDUSTRY EVENTS
Biotech Events
Post an Event
RESOURCES
Real Estate
Business Opportunities

PLoS By Category | Recent PLoS Articles
Otolaryngology

Role of GSK-3ß in the Osteogenic Differentiation of Palatal Mesenchyme
Published: Friday, October 14, 2011
Author: Emily R. Nelson et al.

by Emily R. Nelson, Benjamin Levi, Michael Sorkin, Aaron W. James, Karen J. Liu, Natalina Quarto, Michael T. Longaker

Introduction

The function of Glycogen Synthase Kinases 3ß (GSK-3ß) has previously been shown to be necessary for normal secondary palate development. Using GSK-3ß null mouse embryos, we examine the potential coordinate roles of Wnt and Hedgehog signaling on palatal ossification.

Methods

Palates were harvested from GSK-3ß, embryonic days 15.0–18.5 (e15.0–e18.5), and e15.5 Indian Hedgehog (Ihh) null embryos, and their wild-type littermates. The phenotype of GSK-3ß null embryos was analyzed with skeletal whole mount and pentachrome stains. Spatiotemporal regulation of osteogenic gene expression, in addition to Wnt and Hedgehog signaling activity, were examined in vivo on GSK-3ß and Ihh +/+ and -/- e15.5 embryos using in situ hybridization and immunohistochemistry. To corroborate these results, expression of the same molecular targets were assessed by qRT-PCR of e15.5 palates, or e13.5 palate cultures treated with both Wnt and Hedgehog agonists and anatagonists.

Results

GSK-3ß null embryos displayed a 48 percent decrease (*p<0.05) in palatine bone formation compared to wild-type littermates. GSK-3ß null embryos also exhibited decreased osteogenic gene expression that was associated with increased Wnt and decreased Hedgehog signaling. e13.5 palate culture studies demonstrated that Wnt signaling negatively regulates both osteogenic gene expression and Hedgehog signaling activity, while inhibition of Wnt signaling augments both osteogenic gene expression and Hedgehog signaling activity. In addition, no differences in Wnt signaling activity were noted in Ihh null embryos, suggesting that canonical Wnt may be upstream of Hedgehog in secondary palate development. Lastly, we found that GSK-3ß -/- palate cultures were “rescued” with the Wnt inhibitor, Dkk-1.

Conclusions

Here, we identify a critical role for GSK-3ß in palatogenesis through its direct regulation of canonical Wnt signaling. These findings shed light on critical developmental pathways involved in palatogenesis and may lead to novel molecular targets to prevent cleft palate formation.

  More...

 

//-->